Wheat grain width: a clue for re-exploring visual indicators of grain weight

Author:

Haghshenas Abbas,Emam YahyaORCID,Jafarizadeh Saeid

Abstract

Abstract Background Mean grain weight (MGW) is among the most frequently measured parameters in wheat breeding and physiology. Although in the recent decades, various wheat grain analyses (e.g. counting, and determining the size, color, or shape features) have been facilitated, thanks to the automated image processing systems, MGW estimations have been limited to using few number of image-derived indices; i.e. mainly the linear or power models developed based on the projected area (Area). Following a preliminary observation which indicated the potential of grain width in improving the predictions, the present study was conducted to explore more efficient indices for increasing the precision of image-based MGW estimations. For this purpose, an image archive of the grains was processed, which were harvested from a 2-year field experiment carried out with 3 replicates under two irrigation conditions and included 15 cultivar mixture treatments (so the archive was consisted of 180 images including more than 72,000 grains). Results It was observed that among the more than 30 evaluated indices of grain size and shape, indicators of grain width (i.e. Minor & MinFeret) along with 8 other empirical indices had a higher correlation with MGW, compared with Area. The most precise MGW predictions were obtained using the Area × Circularity, Perimeter × Circularity, and Area/Perimeter indices. Furthermore, it was found that (i) grain width and the Area/Perimeter ratio were the common factors in the structure of the superior predictive indices; and (ii) the superior indices had the highest correlation with grain width, rather than with their mathematical components. Moreover, comparative efficiency of the superior indices almost remained stable across the 4 environmental conditions. Eventually, using the selected indices, ten simple linear models were developed and validated for MGW prediction, which indicated a relatively higher precision than the current Area-based models. The considerable effect of enhancing image resolution on the precision of the models has been also evidenced. Conclusions It is expected that the findings of the present study, along with the simple predictive linear models developed and validated using new image-derived indices, could improve the precision of the image-based MGW estimations, and consequently facilitate wheat breeding and physiological assessments.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3