A rapid and non-destructive method for spatial–temporal quantification of colonization by Pseudomonas syringae pv. tomato DC3000 in Arabidopsis and tomato

Author:

Furci Leonardo,Pascual-Pardo David,Ton JurriaanORCID

Abstract

Abstract Background The bacterial leaf pathogen Pseudomonas syringae pv tomato (Pst) is the most popular model pathogen for plant pathology research. Previous methods to study the plant-Pst interactions rely on destructive quantification of Pst colonisation, which can be labour- and time-consuming and does not allow for spatial–temporal monitoring of the bacterial colonisation. Here, we describe a rapid and non-destructive method to quantify and visualise spatial–temporal colonisation by Pst in intact leaves of Arabidopsis and tomato. Results The method presented here uses a bioluminescent Pst DC3000 strain that constitutively expresses the luxCDABE operon from Photorhabdus luminescens (Pst::LUX) and requires a common gel documentation (Gel Doc) system with a sensitive CCD/CMOS camera and imaging software (Photoshop or Image J). By capturing bright field and bioluminescence images from Pst::LUX-infected leaves, we imaged the spatiotemporal dynamics of Pst infection. Analysis of bioluminescence from live Pst bacteria over a 5-day time course after spray inoculation of Arabidopsis revealed transition of the bacterial presence from the older leaves to the younger leaves and apical meristem. Colonisation by Pst:LUX bioluminescence was obtained from digital photos by calculating relative bioluminescence values, which is adjusted for bioluminescence intensity and normalised by leaf surface. This method detected statistically significant differences in Pst::LUX colonisation between Arabidopsis genotypes varying in basal resistance, as well as statistically significant reductions in Pst::LUX colonisation by resistance-inducing treatments in both Arabidopsis and tomato. Comparison of relative bioluminescence values to conventional colony counting on selective agar medium revealed a statistically significant correlation, which was reproducible between different Gel Doc systems. Conclusions We present a non-destructive method to quantify colonisation by bioluminescent Pst::LUX in plants. Using a common Gel Doc system and imaging software, our method requires less time and labour than conventional methods that are based on destructive sampling of infected leaf material. Furthermore, in contrast to conventional strategies, our method provides additional information about the spatial–temporal patterns of Pst colonisation.

Funder

european research council

leverhulme trust

biotechnology and biological sciences research council

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Reference25 articles.

1. Gardan L, Shafik H, Belouin S, Broch R, Grimont F, Grimont PA. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. Nov. and Pseudomonas cannabina sp. Nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol. 1999;49(Pt 2):469–78.

2. Xin XF, He SY. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol. 2013;51:473–98.

3. Büttner D, He SY. Type III protein secretion in plant pathogenic bacteria. Plant Physiol. 2009;150(4):1656–64.

4. Whalen MC, Innes RW, Bent AF, Staskawicz BJ. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell. 1991;3(1):49–59.

5. Dong X, Mindrinos M, Davis KR, Ausubel FM. Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell. 1991;3(1):61–72.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3