Efficient transformation of the isolated microspores of Chinese cabbage (Brassica rapa L. ssp. pekinensis) by particle bombardment

Author:

Liu Yujia,Zhang Shujiang,Zhang Shifan,Zhang Hui,Li Guoliang,Sun Rifei,Li Fei

Abstract

Abstract Background The low efficiency of genetic transformation in Chinese cabbage (Brassica rapa L. ssp. pekinensis) is the key problem affecting functional verification. Particle bombardment is a widely used method along with the Agrobacterium-mediated method. As a physical means, it has almost no restrictions on the type of host and a wide range of receptor types, which largely avoids the restriction of explants. The bombardment parameters, which include the number of bombardments, the bombardment pressure, and the bombardment distance, may affect the microspores' genetic transformation efficiency. Results The transformation efficiency was improved using the particle bombardment method under the combination of bombardment shot times (3, 4, 5) × bombardment pressure (900, 1100, 1350 psi) × bombardment distance (3, 6, 9 cm). The average viability of microspores in the treatment group ranged from 74.76 to 88.55%, while the control group was 88.09%. When the number of shot times was 4, the number of embryos incubated in the treatment group ranged from 16 to 236 per dish, and the control group had 117 embryos per dish. When the bombardment parameters of the biolistic method were 4 shot times—1350 psi—3 cm, 4 times—1100 psi—3 cm, and 4 times—900 psi—3 cm, they had high transient expression efficiency, and the average number of transformed microspores was 21.67, 11.67, and 11.67 per dish (3.5 mL), respectively. When the bombardment parameters were 4 times, 900 psi, and 6 cm, the highest genetically transformed embryos were obtained, and the transformation efficiency reached 10.82%. Conclusion A new genetic transformation system with proper parameters for Chinese cabbage microspores was established using particle bombardment. This proper transformation system could provide a useful tool for the improvement of cultivar quality and the investigation of functional genes in Chinese cabbage.

Funder

China Agriculture Research System

Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3