A device for the controlled cooling and freezing of excised plant specimens during magnetic resonance imaging

Author:

Villouta Camilo,Cox Benjamin L.,Rauch Beth,Workmaster Beth Ann A.,Eliceiri Kevin W.,Atucha AmayaORCID

Abstract

Abstract Background Investigating plant mechanisms to tolerate freezing temperatures is critical to developing crops with superior cold hardiness. However, the lack of imaging methods that allow the visualization of freezing events in complex plant tissues remains a key limitation. Magnetic resonance imaging (MRI) has been successfully used to study many different plant models, including the study of in vivo changes during freezing. However, despite its benefits and past successes, the use of MRI in plant sciences remains low, likely due to limited access, high costs, and associated engineering challenges, such as keeping samples frozen for cold hardiness studies. To address this latter need, a novel device for keeping plant specimens at freezing temperatures during MRI is described. Results The device consists of commercial and custom parts. All custom parts were 3D printed and made available as open source to increase accessibility to research groups who wish to reproduce or iterate on this work. Calibration tests documented that, upon temperature equilibration for a given experimental temperature, conditions between the circulating coolant bath and inside the device seated within the bore of the magnet varied by less than 0.1 °C. The device was tested on plant material by imaging buds from Vaccinium macrocarpon in a small animal MRI system, at four temperatures, 20 °C, − 7 °C, − 14 °C, and −  21 °C. Results were compared to those obtained by independent controlled freezing test (CFT) evaluations. Non-damaging freezing events in inner bud structures were detected from the imaging data collected using this device, phenomena that are undetectable using CFT. Conclusions The use of this novel cooling and freezing device in conjunction with MRI facilitated the detection of freezing events in intact plant tissues through the observation of the presence and absence of water in liquid state. The device represents an important addition to plant imaging tools currently available to researchers. Furthermore, its open-source and customizable design ensures that it will be accessible to a wide range of researchers and applications.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3