Author:
Wang Lei,Hand Jacqelyn M.,Fu Liyuan,Smith George W.,Yao Jianbo
Abstract
Abstract
Background
Epigenetic regulation of oocyte-specific maternal factors is essential for oocyte and early embryonic development. KPNA7 is an oocyte-specific maternal factor, which controls transportation of nuclear proteins important for early embryonic development. To elucidate the epigenetic mechanisms involved in the controlled expression of KPNA7, both DNA methylation associated transcriptional silencing and microRNA (miRNA)-mediated mRNA degradation of KPNA7 were examined.
Results
Comparison of DNA methylation profiles at the proximal promoter of KPNA7 gene between oocyte and 6 different somatic tissues identified 3 oocyte-specific differentially methylated CpG sites. Expression of KPNA7 mRNA was reintroduced in bovine kidney-derived CCL2 cells after treatment with the methylation inhibitor, 5-aza-2′-deoxycytidine (5-Aza-CdR). Analysis of the promoter region of KPNA7 gene in CCL2 cells treated with 5-Aza-CdR showed a lighter methylation rate in all the CpG sites. Bioinformatic analysis predicted 4 miRNA-1296 binding sites in the coding region of KPNA7 mRNA. Ectopic co-expression of miRNA-1296 and KPNA7 in HEK293 cells led to reduced expression of KPNA7 protein. Quantitative real time PCR (RT-qPCR) analysis revealed that miRNA-1296 is expressed in oocytes and early stage embryos, and the expression reaches a peak level in 8-cell stage embryos, coincident with the time of embryonic genome activation and the start of declining of KPNA7 expression.
Conclusions
These results suggest that DNA methylation may account for oocyte-specific expression of KPNA7, and miRNA-1296 targeting the coding region of KPNA7 is a potential mechanism for KPNA7 transcript degradation during the maternal-to-zygotic transition.
Funder
National Institute of Food and Agriculture
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Itman C, Miyamoto Y, Young J, Jans D, Loveland K: Nucleocytoplasmic transport as a driver of mammalian gametogenesis. In: Seminars in cell and developmental biology: 2009. Elsevier: 607–619.
2. Tejomurtula J, Lee K, Tripurani SK, Smith GW, Yao J. Role of Importin Alpha8, a new member of the Importin alpha family of nuclear transport proteins, in early embryonic development in cattle. Biol Reprod. 2009;81(000268277300012):333–42.
3. Hu J, Wang F, Yuan Y, Zhu X, Wang Y, Zhang Y, Kou Z, Wang S, Gao S. Novel importin-alpha family member Kpna7 is required for normal fertility and fecundity in the mouse. J Biol Chem. 2010;285(20699224):33113–22.
4. Wang X, Park KE, Koser S, Liu S, Magnani L, Cabot RA. KPNA7, an oocyte-and embryo-specific karyopherin α subtype, is required for porcine embryo development. Fertility and Development: Reproduction; 2011.
5. Messerschmidt DM: Should I stay or should I go: Protection and maintenance of DNA methylation at imprinted genes. In: Epigenetics. vol. 7; 2012.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献