Wingless and Archipelago, a fly E3 ubiquitin ligase and a homolog of human tumor suppressor FBW7, show an antagonistic relationship in wing development

Author:

Nam Sujin,Cho Kyung-OkORCID

Abstract

Abstract Background Archipelago (Ago) is a Drosophila homolog of mammalian F-box and WD repeat domain-containing 7 (FBW7, also known as FBXW7). In previous studies, FBW7 has been addressed as a tumor suppressor mediating ubiquitin-dependent proteolysis of several oncogenic proteins. Ubiquitination is a type of protein modification that directs protein for degradation as well as sorting. The level of beta-catenin (β-cat), an intracellular signal transducer in Wnt signaling pathway, is reduced upon overexpression of FBW7 in human cancer cell lines. Loss of function mutations in FBW7 and overactive Wnt signaling have been reported to be responsible for human cancers. Results We found that Ago is important for the formation of shafts in chemosensory bristles at wing margin. This loss of shaft phenotype by knockdown of ago was rescued by knockdown of wingless (wg) whereas wing notching phenotype by knockdown of wg was rescued by knockdown of ago, establishing an antagonistic relationship between ago and wg. In line with this finding, knockdown of ago increased the level of Armadillo (Arm), a homolog of β-cat, in Drosophila tissue. Furthermore, knockdown of ago increased the level of Distal-less (Dll) and extracellular Wg in wing discs. In S2 cells, the amount of secreted Wg was increased by knockdown of Ago but decreased by Ago overexpression. Therefore, Ago plays a previously unidentified role in the inhibition of Wg secretion. Ago-overexpressing clones in wing discs exhibited accumulation of Wg in endoplasmic reticulum (ER), suggesting that Ago prevents Wg protein from moving to Golgi from ER. Conclusions We concluded that Ago plays dual roles in inhibiting Wg signaling. First, Ago decreases the level of Arm, by which Wg signaling is downregulated in Wg-responding cells. Second, Ago decreases the level of extracellular Wg by inhibiting movement of Wg from ER to Golgi in Wg-producing cells.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3