Identifying trigger cues for hospital blood transfusions based on ensemble of machine learning methods

Author:

Zadorozny Eva V.ORCID,Weigel Tyler,Galvagno Samuel M.,Martin-Gill Christian,Brown Joshua B.,Guyette Francis X.

Abstract

Abstract Background Traumatic shock is the leading cause of preventable death with most patients dying within the first six hours from arriving to the hospital. This underscores the importance of prehospital interventions, and growing evidence suggests prehospital transfusion improves survival. Optimizing transfusion triggers in the prehospital setting is key to improving outcomes for patients in hemorrhagic shock. Our objective was to identify factors associated with early in-hospital transfusion requirements available to prehospital clinicians in the field to develop a simple algorithm for prehospital transfusion, particularly for patients with occult shock. Methods We included trauma patients transported by a single critical care transport service to a level I trauma center between 2012 and 2019. We used logistic regression, Fast and Frugal Trees (FFTs), and Bayesian analysis to identify factors associated with early in-hospital blood transfusion as a potential trigger for prehospital transfusion. Results We included 2,157 patients transported from the scene or emergency department (ED) of whom 207 (9.60%) required blood transfusion within four hours of admission. The mean age was 47 (IQR = 28 – 62) and 1,480 (68.6%) patients were male. From 13 clinically relevant factors for early hospital transfusions, four were incorporated into the FFT in following order: 1) SBP, 2) prehospital lactate concentration, 3) Shock Index, 4) AIS of chest (sensitivity = 0.81, specificity = 0.71). The chosen thresholds were similar to conventional ones. Using conventional thresholds resulted in lower model sensitivity. Consistently, prehospital lactate was among most decisive factors of hospital transfusions identified by Bayesian analysis (OR = 2.31; 95% CI 1.55 – 3.37). Conclusions Using an ensemble of frequentist statistics, Bayesian analysis and machine learning, we developed a simple, clinically relevant prehospital algorithm to help identify patients requiring transfusion within 4 h of hospital arrival.

Funder

NIH

Publisher

Springer Science and Business Media LLC

Reference22 articles.

1. Drake SA, Holcomb JB, Yang Y, et al. Establishing a regional trauma preventable/potentially preventable death rate. Ann Surg: Published online; 2020.

2. Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: The PROPPR randomized clinical trial. JAMA: Published online; 2015.

3. Brown JB, Sperry JL, Fombona A, Billiar TR, Peitzman AB, Guyette FX. Pre-trauma center red blood cell transfusion is associated with improved early outcomes in air medical trauma patients. J Am Coll Surg: Published online; 2015.

4. Sperry JL, Guyette FX, Brown JB, et al. Prehospital plasma during air medical transport in trauma patients at risk for hemorrhagic shock. N Engl J Med. 2018;379(4):315–26.

5. Zadorozny E v., Weigel T, Stone A, et al. Prehospital Lactate is Associated with the Need for Blood in Trauma. Prehospital Emergency Care. Published online 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3