An AI-based multiphase framework for improving the mechanical ventilation availability in emergency departments during respiratory disease seasons: a case study

Author:

Ortiz-Barrios Miguel,Petrillo Antonella,Arias-Fonseca Sebastián,McClean Sally,de Felice Fabio,Nugent Chris,Uribe-López Sheyla-Ariany

Abstract

Abstract Background Shortages of mechanical ventilation have become a constant problem in Emergency Departments (EDs), thereby affecting the timely deployment of medical interventions that counteract the severe health complications experienced during respiratory disease seasons. It is then necessary to count on agile and robust methodological approaches predicting the expected demand loads to EDs while supporting the timely allocation of ventilators. In this paper, we propose an integration of Artificial Intelligence (AI) and Discrete-event Simulation (DES) to design effective interventions ensuring the high availability of ventilators for patients needing these devices. Methods First, we applied Random Forest (RF) to estimate the mechanical ventilation probability of respiratory-affected patients entering the emergency wards. Second, we introduced the RF predictions into a DES model to diagnose the response of EDs in terms of mechanical ventilator availability. Lately, we pretested two different interventions suggested by decision-makers to address the scarcity of this resource. A case study in a European hospital group was used to validate the proposed methodology. Results The number of patients in the training cohort was 734, while the test group comprised 315. The sensitivity of the AI model was 93.08% (95% confidence interval, [88.46 − 96.26%]), whilst the specificity was 85.45% [77.45 − 91.45%]. On the other hand, the positive and negative predictive values were 91.62% (86.75 − 95.13%) and 87.85% (80.12 − 93.36%). Also, the Receiver Operator Characteristic (ROC) curve plot was 95.00% (89.25 − 100%). Finally, the median waiting time for mechanical ventilation was decreased by 17.48% after implementing a new resource capacity strategy. Conclusions Combining AI and DES helps healthcare decision-makers to elucidate interventions shortening the waiting times for mechanical ventilators in EDs during respiratory disease epidemics and pandemics.

Funder

European Union Next Generation EU

Universitat Politecnica de Valencia

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3