Author:
Zhou Youxin,Liu Fang,Xu Qinian,Wang Xiuyun
Abstract
Abstract
Background
Gliomas represent the most common primary malignant brain tumors, yet little is known about the molecular pathogenesis of these tumors. The highly-regulated Wnt signal transduction pathway is essential for normal developmental processes, and defects in the pathway are closely linked to oncogenesis. Dickkopf-1 (DKK-1) is a secreted protein that acts as a potent inhibitor of the Wnt pathway. The aim of this study was to examine the expression profile of DKK-1 gene in human glioma and its association with tumor malignancy.
Methods
We determined the expression levels of DKK-1 transcript and protein in 12 glioblastoma cell lines, medulloblastoma cells, low-grade glioma cells, and human astrocyte cells by semiquantitative RT-PCR and ELISA. A total of 47 tumor biopsy specimens and 11 normal brain tissue samples from patients with cerebral trauma internal decompression were embedded in paraffin blocks and used for immunostaining. Twenty-six primary tumors and 7 corresponding brain samples were stored in liquid nitrogen and used for RT-PCR. We further examined serologic concentrations and cerebral fluid levels of DKK-1 in patients with tumors.
Results
DKK-1 could only be detected in 12 human glioblastoma cell lines, not in a panel of other tumor and normal cell lines. The difference between glioma patients and healthy individuals was significant. Kendall's tau-c association analysis also revealed the increased DKK-1 protein expression in tumor tissues of higher pathologic classification. The levels of cerebral fluid DKK-1 protein were significantly higher in glioma patients than in healthy donors or in neuronal benign tumor patients, suggesting that the DKK-1 molecule in cerebral fluids can be applicable to detect the presence of glioma and be developed as a novel prognostic treatment.
Conclusion
The Wnt antagonist DKK-1 gene may have important roles in glioma tumorigenesis and act as a novel biomarker in human malignant glioblastoma.
Publisher
Springer Science and Business Media LLC
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献