Detection of DNA mismatch repair proteins in fresh human blood lymphocytes - towards a novel method for hereditary non-polyposis colorectal cancer (Lynch syndrome) screening

Author:

Hassen Samar,Boman Bruce M,Ali Nawab,Parker Marcie,Somerman Chandra,Ali-Khan Catts Zohra J,Ali Akhtar A,Fields Jeremy Z

Abstract

Abstract Background A broad population-based assay to detect individuals with Lynch Syndrome (LS) before they develop cancer would save lives and healthcare dollars via cancer prevention. LS is caused by a germline mutation in a DNA mismatch repair (MMR) gene, especially protein truncation-causing mutations involving MSH2 or MLH1. We showed that immortalized lymphocytes from LS patients have reduced levels of full-length MLH1 or MSH2 proteins. Thus, it may be feasible to identify LS patients in a broad population-based assay by detecting reduced levels of MMR proteins in lymphocytes. Methods Accordingly, we determined whether MSH2 and MLH1 proteins can also be detected in fresh lymphocytes. A quantitative western blot assay was developed using two commercially available monoclonal antibodies that we showed are specific for detecting full-length MLH1 or MSH2. To directly determine the ratio of the levels of these MMR proteins, we used both antibodies in a multiplex-type western blot. Results MLH1 and MSH2 levels were often not detectable in fresh lymphocytes, but were readily detectable if fresh lymphocytes were first stimulated with PHA. In fresh lymphocytes from normal controls, the MMR ratio was ~1.0. In fresh lymphocytes from patients (N > 50) at elevated risk for LS, there was a bimodal distribution of MMR ratios (range: 0.3-1.0). Conclusions Finding that MMR protein levels can be measured in fresh lymphocytes, and given that cells with heterozygote MMR mutations have reduced levels of full-length MMR proteins, suggests that our immunoassay could be advanced to a quantitative test for screening populations at high risk for LS.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3