[18F]Fluorodeoxyglucose accumulation as a biological marker of hypoxic status but not glucose transport ability in gastric cancer

Author:

Takebayashi Ryusuke,Izuishi Kunihiko,Yamamoto Yuka,Kameyama Reiko,Mori Hirohito,Masaki Tsutomu,Suzuki Yasuyuki

Abstract

Abstract Background The use of [18F] 2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for detection of gastric cancer is often debated because FDG uptake varies for each patient. The purpose of this study was to clarify the molecular mechanisms involved in FDG uptake. Material and methods Fifty patients with gastric cancer who underwent FDG-PET and gastrectomy were studied. Snap-frozen tumor specimens were collected and examined by real-time PCR for relationships between maximum standardized uptake value (SUV) and mRNA expression of the following genes: glucose transporter 1 (GLUT1), hexokinase 2 (HK2), hypoxia-inducible factor 1α (HIF1α), and proliferating cell nuclear antigen (PCNA). Results Tumor size was the only clinicopathological parameter that significantly correlated with SUV. Transcripts for the genes evaluated were about three-fold higher in malignant specimens than in normal mucosa, although only HIF1α was significantly correlated with SUV. When divided into intestinal and non-intestinal tumors, there was a significant correlation between SUV and tumor size in intestinal tumors. Interestingly, the weak association between SUV and HIF1α expression in intestinal tumors was substantially stronger in non-intestinal tumors. No correlation was found between SUV and mRNA expression of other genes in intestinal or non-intestinal tumors. Conclusion SUV was correlated with HIF1α, but not PCNA, HK2, or GLUT1 expression. FDG accumulation could therefore represent tissue hypoxia rather than glucose transport activity for aggressive cancer growth.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3