Author:
Bordignon Valentina,Cordiali-Fei Paola,Rinaldi Monica,Signori Emanuela,Cottarelli Andrea,Zonfrillo Manuela,Ensoli Fabrizio,Rasi Guido,Fuggetta Maria Pia
Abstract
Abstract
Background
Antigen-specific CD8+ cytotoxic T lymphocytes represent potent effector cells of the adaptive immune response against viruses as well as tumours. Therefore assays capable at exploring the generation and function of cytotoxic T lymphocytes represent an important objective for both clinical and experimental settings.
Methods
Here we show a simple and reproducible assay for the evaluation of antigen-specific CD8+ cytotoxic T lymphocytes based on a LysiSpot technique for the simultaneous determination of antigen-specific IFN-γ production and assessment of tumor cytolysis. The assay was developed within an experimental model of colorectal carcinoma, induced by the colorectal tumor cell line DHD-K12 that induces tumors in BDIX rats and, in turn, elicits a tumor- specific immune response.
Results
Using DHD-K12 cells transfected to express Escherichia coli β-galactosidase as target cells, and by the fine setting of spot colours detection, we have developed an in vitro assay that allows the recognition of cytotoxic T lymphocytes induced in BDIX rats as well as the assessment of anti-tumour cytotoxicity. The method highlighted that in the present experimental model the tumour antigen-specific immune response was bound to killing target cells in the proportion of 55%, while 45% of activated cells were not cytotoxic but released IFN-γ. Moreover in this model by an ELISPOT assay we demonstrated the specific recognition of a nonapeptide epitope called CSH-275 constitutionally express in DHD-K12 cells.
Conclusions
The assay proved to be highly sensitive and specific, detecting even low frequencies of cytotoxic/activated cells and providing the evaluation of cytokine-expressing T cells as well as the extent of cytotoxicity against the target cells as independent functions. This assay may represent an important tool to be adopted in experimental settings including the development of vaccines or immune therapeutic strategies
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Kochenderfer JN, Gress RE: A comparison and critical analysis of preclinical anticancer vaccination strategies. Exp Biol Med. 2007, 232: 1130-1141.
2. Komatsu N, Matsueda S, Tashiro K, Ioji T, Shichijo S, Noguchi M, Yamada A, Doi A, Suekane S, Moriya F, Matsuoka K, Kuhara S, Itoh K, Sasada T: Gene expression profiles in peripheral blood as a biomarker in cancer patients receiving peptide vaccination. Cancer.
3. Schwartzentruber DJ, Lawson DH, et al: gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011, 364 (22): 2119-2127.
4. U'Ren L, Kedl R, Dow S: Vaccination with liposome-DNA complexes elicits enhanced antitumor immunity. Cancer Gene Ther. 2006, 13: 1033-1044.
5. Darzynkiewicz Z, Bedner E, Smolewski P, Lee BW, Johnson GL: Detection of caspases activation in situ by fluorochrome-labeled inhibitors of caspases (FLICA). Methods Mol Biol. 2002, 203: 289-299.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献