ABT-737 reverses the acquired radioresistance of breast cancer cells by targeting Bcl-2 and Bcl-xL

Author:

Li Ji-Yu,Li Yu-Yang,Jin Wei,Yang Qing,Shao Zhi-Ming,Tian Xing-Song

Abstract

Abstract Background Acquired radioresistance of cancer cells remains a fundamental barrier to attaining the maximal efficacy of radiotherapy for the treatment of breast cancer. Anti-apoptotic proteins, such as Bcl-2 and Bcl-xL, play an important role in the radioresistance of cancer cells. In the present study, we aimed to determine if ABT-737, a BH3-only mimic, could reverse the acquired radioresistance of the breast cancer cell line MDA-MB-231R by targeting Bcl-2 and Bcl-xL. Methods The radiosensitivity of MDA-MB-231 and MDA-MB-231R cells was compared using colony formation assays. Reverse-transcription PCR and western blot were performed to detect the expression of Bcl-2 and Bcl-xL in the cancer cell lines. Annexin V flow cytometric analysis and caspase-3 colorimetric assay were used to evaluate apoptosis of the cancer cells. Cell viability was measured using the Cell Counting Kit-8. The animals used in this study were 4 to 6-week-old athymic female BALB/c nu/nu mice. Results The MDA-MB-231R cells were more radioresistant than the MDA-MB-231 cells, and Bcl-2 and Bcl-xL were overexpressed in the MDA-MB-231R cells. While ABT-737 was able to restore the radiosensitivity of the MDA-MB-231R cells in vitro and in vivo experiment, it was not able to enhance the radiosensitivity of the MDA-MB-231 cells. In addition, ABT-737 increased radiation-induced apoptosis in the MDA-MB-231R cells. Bcl-2 and Bcl-xL were down regulated in the MDA-MB-231R cells following treatment with ABT-737. Conclusions Targeting of the anti-apoptotic proteins Bcl-2 and Bcl-xL with ABT-737 may reverse the acquired radioresistance of MDA-MB-231R cells in vitro and in vivo. These findings suggest an attractive strategy for overcoming the acquired radioresistance of breast cancer cells.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3