Number of glioma polyploid giant cancer cells (PGCCs) associated with vasculogenic mimicry formation and tumor grade in human glioma

Author:

Qu Yang,Zhang Li,Rong Zhe,He Tao,Zhang Sai

Abstract

Abstract Background Polyploid giant cancer cells (PGCCs) contribute to solid tumor heterogeneity. This study investigated the relationships among PGCCs numbers, vasculogenic mimicry (VM) formation, and tumor grades in glioma. Methods A total of 76 paraffin-embedded glioma tissue samples, including 28 cases of low grade and 48 cases of high grade gliomas, were performed with H&E and immunohistochemical staining for Ki-67 and hemoglobin. The size of PGCCs nuclei was measured by a micrometer using H&E section and defined as at least three times larger than the nuclei of regular diploid cancer cells. The number of PGCCs and different blood supply patterns were compared in different grade gliomas. Microcirculation patterns in tumors were assessed using CD31 immunohistochemical and PAS histochemical double staining. Human glioma cancer cell line C6 was injected into the chicken embryonating eggs to form xenografts, which was used to observe the PGCCs and microcirculation patterns. Results In human glioma, the number of PGCCs increased with the grade of tumors (χ 2 = 4.781, P = 0.015). There were three kinds of microcirculation pattern in human glioma including VM, mosaic vessel (MV) and endothelium dependent vessel. PGCCs were able to generate erythrocytes via budding to form VM. The walls of VM were positive (or negative) for PAS staining and negative for CD31 staining. There were more VM and MVs in high grade gliomas than those in low grade gliomas. The differences have statistical significances for VM (t = 3.745, P = 0.000) and MVs (t = 4.789, P = 0.000). PGCCs, VM and MVs can also be observed in C6 chicken embryonating eggs xenografts. Conclusions The data demonstrated presence of PGCCs, VM and MVs in glioma and PGCCs generating erythrocytes contribute the formation of VM and MVs.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Reference43 articles.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3