Author:
Ben Jemaa Awatef,Bouraoui Yosra,Sallami Sataa,Banasr Ahmed,Rais Nawfel Ben,Ouertani Latifa,Nouira Yassin,Horchani Ali,Oueslati Ridha
Abstract
Abstract
Background
The present study was undertaken to relate the co-expression of prostate-associated antigens, PSMA and PSA, with the degree of vascularization in normal and pathologic (hyperplasia and cancer) prostate tissues to elucidate their possible role in tumor progression.
Methods
The study was carried out in 6 normal, 44 benign prostatic hyperplastic and 39 cancerous human prostates. Immunohistochemical analysis were performed using the monoclonal antibody CD34 to determine the angiogenic activity, and the monoclonal antibodies 3E6 and ER-PR8 to assess PSMA and PSA expression, respectively.
Results
In our study we found that in normal prostate tissue, PSMA and PSA were equally expressed (3.7 ± 0.18 and 3.07 ± 0.11). A significant difference in their expression was see in hyperplastic and neoplastic prostates tissues (16.14 ± 0.17 and 30.72 ± 0.85, respectively) for PSMA and (34.39 ± 0.53 and 17.85 ± 1.21, respectively) for PSA. Study of prostate tumor profiles showed that the profile (PSA+, PSMA-) expression levels decreased between normal prostate, benign prostatic tissue and primary prostate cancer. In the other hand, the profile (PSA-, PSMA+) expression levels increased from normal to prostate tumor tissues. PSMA overexpression was associated with high intratumoral angiogenesis activity. By contrast, high PSA expression was associated with low angiogenesis activity.
Conclusion
These data suggest that these markers are regulated differentially and the difference in their expression showed a correlation with malignant transformation. With regard to the duality PSMA-PSA, this implies the significance of their investigation together in normal and pathologic prostate tissues.
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Laczkó I, Hudson DL, Freeman A, Feneley MR, Masters JR: Comparison of the zones of the human prostate with the seminal vesicle: morphology, immunohistochemistry, and cell kinetics. Prostate. 2005, 62: 260-266.
2. Van der Heul-Nieuwenhuijsen L, Hendriksen PJM, Van der Kwast TH, Jenster G: Gene expression profiling of the human prostate zones. BJU Int. 2006, 98: 886-897. 10.1111/j.1464-410X.2006.06427.x.
3. Hudson DL: Epithelial stem cells in human prostate growth and disease. Prostate Cancer Prostatic Dis. 2004, 7: 188-194. 10.1038/sj.pcan.4500745.
4. Keller ET, Hall C, Dai J, Wallner L: Biomarkers of Growth, Differentiation, and Metastasis of Prostate Epithelium. Journal of Clinical Ligand Assay. 2004, 27: 133-136.
5. Israeli RS, Powell CT, Fair WR, Heston WD: Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res. 1993, 53: 227-230.
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献