Author:
Bottelier Marco A,Schouw Marieke LJ,Klomp Anne,Tamminga Hyke GH,Schrantee Anouk GM,Bouziane Cheima,de Ruiter Michiel B,Boer Frits,Ruhé Henricus G,Denys Damiaan,Rijsman Roselyne,Lindauer Ramon JL,Reitsma Hans B,Geurts Hilde M,Reneman Liesbeth
Abstract
Abstract
Background
Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of different approaches to determine whether there are related findings in humans.
Methods/Design
Animal studies were carried out to investigate age-related effects of psychotropic drugs and to validate new neuroimaging techniques. In addition, we set up two double-blind placebo controlled clinical trials with MPH in 50 boys (10–12 years) and 50 young men (23–40 years) suffering from ADHD (ePOD-MPH) and with FLX in 40 girls (12–14 years) and 40 young women (23–40 years) suffering from depression and anxiety disorders (ePOD-SSRI). Trial registration numbers are: Nederlands Trial Register NTR3103 and NTR2111. A cross-sectional cohort study on age-related effects of these psychotropic medications in patients who have been treated previously with MPH or FLX (ePOD-Pharmo) is also ongoing. The effects of psychotropic drugs on the developing brain are studied using neuroimaging techniques together with neuropsychological and psychiatric assessments of cognition, behavior and emotion. All assessments take place before, during (only in case of MPH) and after chronic treatment.
Discussion
The combined results of these approaches will provide new insight into the modulating effect of MPH and FLX on brain development.
Publisher
Springer Science and Business Media LLC
Subject
Psychiatry and Mental health
Reference104 articles.
1. Swaab DF, Boer K, Swaab DF, Boer K: Functional teratogenic effects of chemicals on the developing brain. Fetal and Neonatal Neurology and Neurosurgery. Edited by: Levene MI, Whittle MJ, Chervenak FA, Punt J, Bennett MJ. 2001, Churchill Livingstone: Elsevier, 251-265. 3
2. Iñiguez SD, Warren BL, Bolanos-Guzman CA: Short- and long-term functional consequences of fluoxetine exposure during adolescence in male rats. Biol Psychiatry. 2010, 67: 1057-1066. 10.1016/j.biopsych.2009.12.033.
3. Karanges E, Li KM, Motbey C, Callaghan PD, Katsifis A, McGregor IS: Differential behavioural and neurochemical outcomes from chronic paroxetine treatment in adolescent and adult rats: a model of adverse antidepressant effects in human adolescents?. Int J Neuropsychopharmacol. 2011, 14: 491-504. 10.1017/S146114571100006X.
4. Bouet V, Klomp A, Freret T, Wylezinska-Arridge M, Lopez-Tremoleda J, Dauphin F, et al: Age-dependent effects of chronic fluoxetine treatment on the serotonergic system one week following treatment. Psychopharmacology (Berl). 2012, 221: 329-339. 10.1007/s00213-011-2580-1.
5. Wegerer V, Moll GH, Bagli M, Rothenberger A, Ruther E, Huether G: Persistently increased density of serotonin transporters in the frontal cortex of rats treated with fluoxetine during early juvenile life. J Child Adolesc Psychopharmacol. 1999, 9: 13-24. 10.1089/cap.1999.9.13.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献