Author:
Velázquez-Ponce Manuel,Salgado-Zamora Héctor,Jiménez-Vázquez Hugo A,Campos-Aldrete Maria Elena,Jiménez Rogelio,Cervantes Humberto,Hadda Taibi Ben
Abstract
Abstract
Background
The proton at position 5 of imidazo[1,2-a]pyridines substituted with an angular electron withdrawing group (EWG) at position 3, shows an unusual downfield chemical shift, which is usually explained in terms of a peri effect. However usage of this term is sometimes confusing. In this investigation, it is proposed that the aforementioned shift is in fact a combination of several factors: Anisotropy, long-distance mesomerism and an attractive intramolecular interaction of the electrostatic hydrogen bond type.
Results
Theoretical calculations were performed aimed to obtain evidence of the existence of an intramolecular non-bonding interaction between H-5 and the oxygen atom of the EWG. Results derived from conformational and vibrational analysis at the DFT B3LYP/6-311++G(d,p) level of theory, the determination of Bond Critical Points derived from AIM theory, and the measurement of some geometrical parameters, support the hypothesis that the higher stability of the prevailing conformation in these molecules (that in which the oxygen of the EWG is oriented towards H-5) has its origin in an intramolecular interaction.
Conclusion
Computational calculations predicted correctly the conformational preferences in angular 3-π-EWG-substituted imidazo[1,2-a]pyridines. The existence of an electrostatic hydrogen bond between H-5 and the oxygen atom of the π-EWG was supported by several parameters, including X-ray crystallography. The existence of such structural array evidently impacts the H-5 chemical shift.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Kazzouli SE, Griffon du Bellay A, Berteina-Raboin S, Delagrange P, Caignard DH, Guillaumet G: Design and synthesis of 2-phenyl imidazo[1,2-a]pyridines as a novel class of melatonin receptor ligands. Eur J Med Chem. 2011, 46: 4252-4257. 10.1016/j.ejmech.2011.06.030.
2. Gong YD, Cheon HG, Lee T, Sookkang N: A novel 3-(8-chloro-6-(trifluoromethyl) imidazo[1,2-a]pyridine-2-yl)phenyl acetate skeleton and pharmacophore model as glucagon-like peptide 1 receptor agonists. Bull Korean Chem Soc. 2010, 31: 3760-3764. 10.5012/bkcs.2010.31.12.3760.
3. Koubachi J, Kazzouli SE, Berteina-Raboin S, Mouaddib A, Guillaumet G: Synthesis of polysubstituted imidazo[1,2-a]pyridines via microwave-assisted one-pot cyclization Suzuki coupling palladium-catalyzed heteroarylation. J Org Chem. 2007, 72: 7650-7655. 10.1021/jo0712603. and references 1–11 therein
4. Paudler WW, Chasman JN: CNDO/2 calculations of some polyazaindenes. J Heterocyclic Chem. 1973, 10: 499-501. 10.1002/jhet.5570100414.
5. Teulade JC, Escale R, Grassy G, Girard JP, Chapat JP: Reactivité de derives de l’imidazo[1,2-a]pyridine vis-à-vis de la reaction de nitration. Effets de substituant par RMN 13C et CNDO. Bull Soc Chim France II. 1979, 9-10: 529-536.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Crystal structure, hydrogen bonding interactions, Hirshfeld surfaces, energy frameworks, and DFT calculation of Diethyl 3-(4-substitutedbenzoyl)indolizine-1,2-dicarboxylates;Journal of Molecular Structure;2024-07
2. Computational study of the intermolecular interactions and their effect on the UV-visible spectra of the ternary liquid mixture of benzene, ethanol and propylene glycol;Journal of Molecular Modeling;2020-09-14
3. Crystal structure, DFT calculation, Hirshfeld surface analysis and energy framework study of 6-bromo-2-(4-bromophenyl)imidazo[1,2-a]pyridine;Acta Crystallographica Section E Crystallographic Communications;2019-10-03
4. Crystal Correlation Of Heterocyclic Imidazo[1,2-a]pyridine Analogues and Their Anticholinesterase Potential Evaluation;Scientific Reports;2019-01-30
5. Asymmetric Nucleophilic Catalysis with an Octahedral Chiral-at-Metal Iridium(III) Complex;ACS Catalysis;2017-07-10