Synthesis and crystal structures of 2-methyl-4-aryl-5-oxo-5H-indeno [1,2-b] pyridine carboxylate derivatives

Author:

Pandian Ramesh,Naushad Edayadulla,Vijayakumar Vinodhkumar,Peters Günther H,Mondikalipudur Nanjappagounder Ponnuswamy

Abstract

Abstract Background Hantzsch 1,4-dihydropyridines (Hantzsch1,4-DHP) have been extensively utilized as the analogs of nicotinamide adenine dinucleotide (NADH) coenzyme to study the mechanism and various redox processes. During the redox processes 1,4-DHP systems undergo transformation into the corresponding pyridine derivatives through oxidation. Consequently, the interest in this aromatization reaction, investigation of a wide range of 1, 4-DHPs continues to attract the attention of researchers. Herein, we report the preparation of pyridine derivatives and the crystal structures determined by X-ray crystallographic methods. Results The crystal structures and conformational studies of two organic compounds, namely ethyl 2-methyl-4-phenyl-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate (I) and ethyl 2-methyl-4-(4 chlorophenyl)-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate (II) are reported. The terminal ethyl group of the compound I is disordered over two positions with the refined occupancies of 0.645 & 0.355 and C8 one dimensional zig-zag chain running along 101 direction through C-H…O type of intermolecular interactions. In the compound II, C-H…O interactions connect the molecules to form an R2 2 (16) dimer running along 011 direction. Conclusion The crystal structures ethyl 2-methyl-4-phenyl-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate and ethyl 2-methyl-4-(4 chlorophenyl)-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate have been investigated in detail. The terminal ethyl group of compound I is disordered. In compound II, the substitution of Cl atom in the phenyl ring alters the configuration of carboxylate group with respect to the pyridine indane ring.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3