Author:
Fuliaş Adriana,Ledeţi Ionuţ,Vlase Gabriela,Popoiu Călin,Hegheş Alina,Bilanin Mihai,Vlase Titus,Gheorgheosu Dorina,Craina Marius,Ardelean Simona,Ferechide Dumitru,Mărginean Otilia,Moş Liana
Abstract
Abstract
Background
The compatibility study of active substances with excipients finds an important role in the domain of pharmaceutical research, being known the fact that final formulation is the one administered to the patient. In order to evaluate the compatibility between active substance and excipients, different analytical techniques can be used, based on their accuracy, reproducibility and fastness.
Results
Compatibility study of two well-known active substances, procaine and benzocaine, with four commonly used excipients, was carried out employing thermal analysis (TG/DTG/HF) and Fourier Transform Infrared Spectroscopy (UATR-FT-IR). The selected excipients were microcrystalline cellulose, lactose monohydrate, magnesium stearate and talc. Equal proportion of active substance and excipients (w/w) was utilized in the interaction study. The absolute value of the difference between the melting point peak of active substances and the one corresponding for the active substances in the analysed mixture, as well the absolute value of the difference between the enthalpy of the pure active ingredient melting peak and that of its melting peak in the different analysed mixtures were chosen as indexes of the drug-excipient interaction degree. All the results obtained through thermal analysis were also sustained by FT-IR spectroscopy.
Conclusions
The corroboration of data obtained by thermal analysis with the ones from FT-IR spectroscopy indicated that no interaction occurs between procaine and benzocaine, with microcrystalline cellulose and talc, as well for the benzocaine-lactose mixture. Interactions were confirmed between procaine and benzocaine respectively and magnesium stearate, and for procaine and lactose.
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Stulzer HK, Rodrigues PO, Cardoso TM, Matos JSR: Compatibility studies between captopril and pharmaceutical excipients used in tablets formulations. J Therm Anal Calorim. 2008, 91: 323-328. 10.1007/s10973-006-7935-1.
2. Nunes RS, Semaan FS, Riga AT, Cavalheiro ETG: Thermal behaviour of verapamil hydrochloride and its association with excipients. J Therm Anal Calorim. 2009, 97: 349-353. 10.1007/s10973-009-0072-x.
3. Fuliaş A, Vlase T, Vlase G, Doca N: Thermal behaviour of cephalexin in different mixtures. J Therm Anal Cal. 2010, 99: 987-992. 10.1007/s10973-010-0708-x.
4. Fuliaş A, Ledeţi I, Vlase G, Vlase T: Physico-chemical solid-state characterization of pharmaceutical pyrazolones: an unexpected thermal behaviour. J Pharm Biomed Anal. 2013, 81-82: 44-49.
5. Vikarm Singh A, Kanta Nath L: Evaluation of compatibility of lamivudine with tablet excipients and a novel synthesized polymer. J Mater Environ Sci. 2011, 2 (3): 243-250.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献