Author:
Ramimoghadam Donya,Bin Hussein Mohd Zobir,Taufiq-Yap Yun Hin
Abstract
Abstract
Background
Rice as a renewable, abundant bio-resource with unique characteristics can be used as a bio-template to synthesize various functional nanomaterials. Therefore, the effect of uncooked rice flour as bio-template on physico-chemical properties, especially the morphology of zinc oxide nanostructures was investigated in this study.
The ZnO particles were synthesized through hydrothermal-biotemplate method using zinc acetate-sodium hydroxide and uncooked rice flour at various ratios as precursors at 120°C for 18 hours.
Results
The results indicate that rice as a bio-template can be used to modify the shape and size of zinc oxide particles. Different morphologies, namely flake-, flower-, rose-, star- and rod-like structures were obtained with particle size at micro- and nanometer range. Pore size and texture of the resulting zinc oxide particles were found to be template-dependent and the resulting specific surface area enhanced compared to the zinc oxide synthesized without rice under the same conditions. However, optical property particularly the band gap energy is generally quite similar.
Conclusion
Pure zinc oxide crystals were successfully synthesized using rice flour as biotemplate at various ratios of zinc salt to rice. The size- and shape-controlled capability of rice to assemble the ZnO particles can be employed for further useful practical applications.
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Yang D, Fan T, Zhou H, Ding J, Zhang D: Biogenic hierarchical TiO2/SiO2 derived from rice husk and enhanced photocatalytic properties for dye degradation. PLoS One. 2011, 6 (9): e24788-10.1371/journal.pone.0024788.
2. Qinglei L, Fan T, Ding J, Guo Q: Bio-inspired functional materials templated from nature materials. kona powder and particle journal. 2010, 28 (28): 116-130.
3. Zhou H, Fan T, Zhang D: Biotemplated materials for sustainable energy and environment: current status and challenges. Chem Sus Chem. 2011, 4 (10): 1344-87. 10.1002/cssc.201100048.
4. Seeman NC: DNA in a material world. Nature. 2003, 421 (6921): 427-31. 10.1038/nature01406.
5. McMillan RA, Paavola CD, Howard J, Chan SL, Zaluzec NJ, Trent JD: Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nat Mater. 2002, 1 (4): 247-52. 10.1038/nmat775.
Cited by
123 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献