Author:
Balavandy Sepideh Keshan,Shameli Kamyar,Biak Dayang Radiah Binti Awang,Abidin Zurina Zainal
Abstract
Abstract
Background
This study aims to investigate the influence of different stirring time for synthesis of silver nanoparticles in glutathione (GSH) aqueous solution. The silver nanoparticles (Ag-NPs) were prepared by green synthesis method using GSH as reducing agent and stabilizer, under moderate temperature at different stirring times. Silver nitrate (AgNO3) was taken as the metal precursor while Ag-NPs were prepared in the over reaction time.
Results
Formation of Ag-NPs was determined by UV–vis spectroscopy where surface plasmon absorption maxima can be observed at 344–354 nm from the UV–vis spectrum. The synthesized nanoparticles were also characterized by X-ray diffraction (XRD). The peaks in the XRD pattern confirmed that the Ag-NPs possessed a face-centered cubic and peaks of contaminated crystalline phases were unable to be located. Transmission electron microscopy (TEM) revealed that Ag-NPs synthesized were in spherical shape. Zeta potential results indicate that the stability of the Ag-NPs is increases at the 72 h stirring time of reaction comparison to GSH. The Fourier transform infrared (FT-IR) spectrum suggested the complexation present between GSH and Ag-NPs. The use of green chemistry reagents, such as peptide, provides green and economic features to this work.
Conclusions
Ag-NPs were successfully synthesized in GSH aqueous solution under moderate temperature at different stirring times. The study clearly showed that the Ag-NPs synthesized in the long times of stirring, thus, the kinetic of GSH reaction is very slow. TEM results shows that with the increase of stirring times the mean particle size of Ag-NPs become increases. The FT-IR spectrum suggested the complexation present between GSH and Ag-NPs. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field.
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Zhang L, Webster TJ: Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009, 4: 66-80. 10.1016/j.nantod.2008.10.014.
2. Kharissova OV, Rasika Dias HV, Kharisov BI, Pérez BO, Jiménez-Pérez VM: The greener synthesis of nanoparticles. Trends Biotechnol. 2013, 31 (4): 1-9.
3. Carma RS: Greener approach to nanomaterials and sustainable applications. Curr Opin Chem Eng. 2012, 1: 123-128. 10.1016/j.coche.2011.12.002.
4. Roy N, Gaur A, Jain A, Bhattacharya S, Rani V: Green synthesis of silver nanoparticles: an approach to overcome toxicity. Environ Toxicol Pharmacol. 2013, 36: 807-812. 10.1016/j.etap.2013.07.005.
5. Khalil MMH, Ismail EH, El-Baghdady KZ, Mohamed D: Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem. 2013, 1-9. http://dx.doi.org/10.1016/j.arabjc.2013.04.007,
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献