A novel serum spherical lectin from lamprey reveals a more efficient mechanism of immune initiation and regulation in jawless vertebrates

Author:

Lu Jiali,Duan Jinsong,Han Yinglun,Gou Meng,Li Jun,Li Qingwei,Pang Yue

Abstract

AbstractThe innate immune system is the body’s first line of defense against pathogens and involves antibody and complement system-mediated antigen removal. Immune-response-related complement molecules have been identified in lamprey, and the occurrence of innate immune response via the mannose-binding lectin-associated serine proteases of the lectin cascade has been reported. We have previously shown that lamprey (Lampetra japonica) serum can efficiently and specifically eliminate foreign pathogens. Therefore, we aimed to understand the immune mechanism of lamprey serum in this study. We identified and purified a novel spherical lectin (LSSL) from lamprey serum. LSSL had two structural calcium ions coordinated with conserved amino acids, as determined through cryogenic electron microscopy. LSSL showed high binding capacity with microbial and mammalian glycans and demonstrated agglutination activity against bacteria. Phylogenetic analysis revealed that LSSL was transferred from phage transposons to the lamprey genome via horizontal gene transfer. Furthermore, LSSL was associated with mannose-binding lectin-associated serine protease 1 and promoted the deposition of the C3 fragment on the surface of target cells upon binding. These results led us to conclude that LSSL initiates and regulates agglutination, resulting in exogenous pathogen and tumor cell eradication. Our observations will give a greater understanding of the origin and evolution of the complement system in higher vertebrates and lead to the identification of novel immune molecules and pathways for defense against pathogens and tumor cells.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3