ALKBH5 in mouse testicular Sertoli cells regulates Cdh2 mRNA translation to maintain blood–testis barrier integrity
-
Published:2022-11-22
Issue:1
Volume:27
Page:
-
ISSN:1425-8153
-
Container-title:Cellular & Molecular Biology Letters
-
language:en
-
Short-container-title:Cell Mol Biol Lett
Author:
Cai Zhonglin,Zhang Yao,Yang Lin,Ma Chunhui,Fei Yi,Ding Jing,Song Wei,Tong Wei-Min,Niu Yamei,Li Hongjun
Abstract
Abstract
Background
RNA N6-methyladenosine (m6A) is involved in mammalian spermatogenesis. In both germ cells and Leydig cells, ALKBH5 regulates spermatogenesis and androgen synthesis in an m6A-dependent manner. However, it is unclear whether ALKBH5 plays a role in testicular Sertoli cells, which constitute the blood–testis barrier (BTB) through cell junctions between adjacent Sertoli cells.
Methods
ALKBH5 expression in the testes of humans and mice was detected by immunohistochemical staining and immunofluorescence staining. BTB integrity was evaluated by BTB assay. m6A-seq was performed to screen for BTB-related molecules regulated by ALKBH5. m6A immunoprecipitation–quantitative real-time polymerase chain reaction (qPCR), RNA immunoprecipitation–qPCR, western blot, coimmunoprecipitation, and polysome fractionation–qPCR analyses were performed to explore the mechanisms of ALKBH5 in BTB. Transmission electron microscopy was applied to observe the BTB ultrastructure.
Results
ALKBH5 in Sertoli cells is related to the integrity of the BTB. Subsequently, the m6A level on Cdh2 mRNA, encoding a structural protein N-cadherin in the BTB, was found to be regulated by ALKBH5. IGF2BP1/2/3 complexes and YTHDF1 promoted Cdh2 mRNA translation. In addition, we found that basal endoplasmic specialization, in which N-cadherin is a main structural protein, was severely disordered in the testes of Alkbh5-knockout mice.
Conclusions
Our study revealed that ALKBH5 regulates BTB integrity via basal endoplasmic specialization by affecting Cdh2 mRNA translation.
Funder
National key R&D Program of China National Natural Science Foundation of China Chinese Academy of Medical Sciences Initiative for Innovative Medicine
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biochemistry
Reference46 articles.
1. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29. 2. Lin Z, Hsu PJ, Xing X, Fang J, Lu Z, Zou Q, Zhang KJ, Zhang X, Zhou Y, Zhang T, et al. Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Res. 2017;27(10):1216–30. 3. Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 2017;27(9):1115–27. 4. Tang C, Klukovich R, Peng H, Wang Z, Yu T, Zhang Y, Zheng H, Klungland A, Yan W. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells. Proc Natl Acad Sci USA. 2018;115(2):E325–33. 5. Tang C, Xie Y, Yu T, Liu N, Wang Z, Woolsey RJ, Tang Y, Zhang X, Qin W, Zhang Y, et al. m6A-dependent biogenesis of circular RNAs in male germ cells. Cell Res. 2020;30(3):211–28.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|