MCCC2 is a novel mediator between mitochondria and telomere and functions as an oncogene in colorectal cancer

Author:

Liu Wanjun,Chen Si,Xie Wenqing,Wang Qian,Luo Qianxin,Huang Minghan,Gu Minyi,Lan Ping,Chen DaiciORCID

Abstract

Abstract Background The mitochondrial gene MCCC2, a subunit of the heterodimer of 3-methylcrotonyl-CoA carboxylase, plays a pivotal role in catabolism of leucine and isovaleric acid. The molecular mechanisms and prognostic value still need to be explored in the context of specific cancers, including colorectal cancer (CRC). Methods In vitro and in vivo cell-based assays were performed to explore the role of MCCC2 in CRC cell proliferation, invasion, and migration. Mitochondrial morphology, membrane potential, intracellular reactive oxygen species (ROS), telomerase activity, and telomere length were examined and analyzed accordingly. Protein complex formation was detected by co-immunoprecipitation (CO-IP). Mitochondrial morphology was observed by transmission electron microscopy (TEM). The Cancer Genome Atlas (TCGA) CRC cohort analysis, qRT-PCR, and immunohistochemistry (IHC) were used to examine the MCCC2 expression level. The association between MCCC2 expression and various clinical characteristics was analyzed by chi-square tests. CRC patients’ overall survival (OS) was analyzed by Kaplan–Meier analysis. Results Ectopic overexpression of MCCC2 promoted cell proliferation, invasion, and migration, while MCCC2 knockdown (KD) or knockout (KO) inhibited cell proliferation, invasion, and migration. MCCC2 KD or KO resulted in reduced mitochondria numbers, but did not affect the gross ATP production in the cells. Mitochondrial fusion markers MFN1, MFN2, and OPA1 were all upregulated in MCCC2 KD or KO cells, which is in line with a phenomenon of more prominent mitochondrial fusion. Interestingly, telomere lengths of MCCC2 KD or KO cells were reduced more than control cells. Furthermore, we found that MCCC2 could specifically form a complex with telomere binding protein TRF2, and MCCC2 KD or KO did not affect the expression or activity of telomerase reverse transcriptase (TERT). Finally, MCCC2 expression was heightened in CRC, and patients with higher MCCC2 expression had favorable prognosis. Conclusions Together, we identified MCCC2 as a novel mediator between mitochondria and telomeres, and provided an additional biomarker for CRC stratification.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3