Abstract
AbstractElucidating the intricate interactions between viral pathogens and host cellular machinery during infection is paramount for understanding pathogenic mechanisms and identifying potential therapeutic targets. The RNA modification N6-methyladenosine (m6A) has emerged as a significant factor influencing the trajectory of viral infections. Hence, the precise and quantitative mapping of m6A modifications in both host and viral RNA is pivotal to understanding its role during viral infection. With the rapid advancement of sequencing technologies, scientists are able to detect m6A modifications with various quantitative, high-resolution, transcriptome approaches. These technological strides have reignited research interest in m6A, underscoring its significance and prompting a deeper investigation into its dynamics during viral infections. This review provides a comprehensive overview of the historical evolution of m6A epitranscriptome sequencing technologies, highlights the latest developments in transcriptome-wide m6A mapping, and emphasizes the innovative technologies for detecting m6A modification. We further discuss the implications of these technologies for future research into the role of m6A in viral infections.
Graphical Abstract
Funder
National Natural Science Foundation of China
Key-Area Research and Development Program of Guangdong Province
Guangzhou Municipal Science and Technology Bureau
Publisher
Springer Science and Business Media LLC
Reference77 articles.
1. Aruna A, Mbala P, Minikulu L, Mukadi D, Bulemfu D, Edidi F, et al. Ebola virus disease outbreak—democratic republic of the Congo, August 2018–November 2019. Morb Mortal Wkly Rep. 2019;68:1162.
2. Chow EJ, Uyeki TM, Chu HY. The effects of the COVID-19 pandemic on community respiratory virus activity. Nat Rev Microbiol. 2023;21:195–210.
3. Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther. 2022;7:94.
4. Matusewicz L, Golec M, Czogalla A, Kuliczkowski K, Konka A, Zembala-John J, et al. COVID-19 therapies: do we see substantial progress? Cell Mol Biol Lett. 2022;27:42.
5. Boccaletto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S, Purta E, et al. MODOMICS: a database of RNA modification pathways: 2021 update. Nucleic Acids Res. 2022;50:D231–5.