The low-complexity domains of the KMT2D protein regulate histone monomethylation transcription to facilitate pancreatic cancer progression

Author:

Li Weihan,Wu Lei,Jia Hui,Lin Zenghua,Zhong Renhao,Li Yukun,Jiang Chenwei,Liu Shifan,Zhou Xiaorong,Zhang ErhaoORCID

Abstract

Abstract Background Liquid–liquid phase separation (LLPS) within the nucleus is directly linked to driving gene expression through transcriptional complexes. Histone lysine methyltransferase 2D (KMT2D) is widely present in many cancers. It is known to epigenetically stimulate the expression of genes associated with tumorigenesis and metastasis. Our analyses show that KMT2D possesses two distinct low-complexity domains (LCDs) capable of driving the assembly of membrane-less condensates. The dependence of the mechanisms underlying monomethylation of H3K4 on the LLPS microenvironment derived from KMT2D LCDs is unclear in tumor. Methods KMT2D LCD-depletion cells were used to investigate tumor cell proliferation, apoptosis, and migration. We identified some core proteins, including WDR5, RBBP5, and ASH2L, which are involved in the KMT2D-associated catalytic complex in KMT2D LCD-deficient cells to further elucidate the mechanism that decreases monomethylation of H3K4. We also evaluated the viability of KMT2D LCD-deficient cells in vivo. Finally, using 1,6-hexanediol (HD), an inhibitor of LLPS, we determined cell activities associated with KMT2D function in wild-type PANC-1 cells. Results Without the LLPS microenvironment in KMT2D LCD-deficient cells or wild-type PANC-1 cells treated with HD, the WDR5 protein was significantly less stable and the protein–protein interactions between the components of the KMT2D–enzyme complex were attenuated, impairing the formation of the complex. Moreover, with the decrease in H3K4me1 level at enhancers, transcription factors such as LIFR and KLF4 were markedly downregulated, effectively inhibiting tumor progression. In xenograft tumor models, PANC-1 cells lacking the KMT2D LCDs showed effectively suppressed tumor growth compared to normal cells. Conclusions Our data indicate that the two low-complexity domains of the KMT2D protein could form a stable LLPS microenvironment, promoting the KMT2D catalysis of H3K4 monomethylation through stabilization of the WDR5 protein and KMT2D–enzyme complex. Therefore, finding ways to regulate the LLPS microenvironment will be benefitial for new cancer treatment strategies.

Funder

National Natural Science Foundation of China

The Scientific Research Program of Nantong

China Postdoctoral Science Foundation Funded Project

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3