Hsp70-Bim interaction facilitates mitophagy by recruiting parkin and TOMM20 into a complex

Author:

Song TingORCID,Yin Fangkui,Wang Ziqian,Zhang Hong,Liu Peng,Guo Yafei,Tang Yao,Zhang Zhichao

Abstract

Abstract Background For cancer therapy, the identification of both selective autophagy targets and small molecules that specifically regulate autophagy is greatly needed. Heat shock protein 70 (Hsp70) is a recently discovered BH3 receptor that forms a protein‒protein interaction (PPI) with Bcl-2-interacting mediator of cell death (Bim). Herein, a specific inhibitor of the Hsp70-Bim PPI, S1g-2, and its analog S1, which is a Bcl-2-Bim disruptor, were used as chemical tools to explore the role of Hsp70-Bim PPI in regulating mitophagy. Methods Co-immunoprecipitation and immunofluorescence assays were used to determine protein interactions and colocalization patterns. Organelle purification and immunodetection of LC3-II/LC3-I on mitochondria, endoplasmic reticulum (ER) and Golgi were applied to identify specific types of autophagy. Cell-based and in vitro ubiquitination studies were used to study the role of the Hsp70-Bim PPI in parkin-mediated ubiquitination of outer mitochondrial membrane 20 (TOMM20). Results We found that after the establishment of their PPI, Hsp70 and Bim form a complex with parkin and TOMM20, which in turn facilitates parkin translocation to mitochondria, TOMM20 ubiquitination and mitophagic flux independent of Bax/Bak. Moreover, S1g-2 selectively inhibits stress-induced mitophagy without interfering with basal autophagy. Conclusions The findings highlight the dual protective function of the Hsp70-Bim PPI in regulating both mitophagy and apoptosis. S1g-2 is thus a newly discovered antitumor drug candidate that drives both mitophagy and cell death via apoptosis. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3