E2F1 promotes cell cycle progression by stabilizing spindle fiber in colorectal cancer cells

Author:

Fang Zejun,Lin Min,Chen Shenghui,Liu Hong,Zhu Minjing,Hu Yanyan,Han Shanshan,Wang Yizhang,Sun Long,Zhu Fengjiao,Xu Chengfu,Gong Chaoju

Abstract

Abstract Background E2F1 is a transcription factor that regulates cell cycle progression. It is highly expressed in most cancer cells and activates transcription of cell cycle-related kinases. Stathmin1 and transforming acidic coiled-coil-containing protein 3 (TACC3) are factors that enhance the stability of spindle fiber. Methods The E2F1-mediated transcription of transforming acidic coiled-coil-containing protein 3 (TACC3) and stathmin1 was examined using the Cancer Genome Atlas (TCGA) analysis, quantitative polymerase chain reaction (qPCR), immunoblotting, chromatin immunoprecipitation (ChIP), and luciferase reporter. Protein–protein interaction was studied using co-IP. The spindle structure was shown by immunofluorescence. Phenotype experiments were performed through MTS assay, flow cytometry, and tumor xenografts. Clinical colorectal cancer (CRC) specimens were analyzed based on immunohistochemistry. Results The present study showed that E2F1 expression correlates positively with the expression levels of stathmin1 and TACC3 in colorectal cancer (CRC) tissues, and that E2F1 transactivates stathmin1 and TACC3 in CRC cells. Furthermore, protein kinase A (PKA)-mediated phosphorylation of stathmin1 at Ser16 is essential to the phosphorylation of TACC3 at Ser558, facilitating the assembly of TACC3/clathrin/α-tubulin complexes during spindle formation. Overexpression of Ser16-mutated stathmin1, as well as knockdown of stathmin1 or TACC3, lead to ectopic spindle poles including disorganized and multipolar spindles. Overexpression of wild-type but not Ser16-mutated stathmin1 promotes cell proliferation in vitro and tumor growth in vivo. Consistently, a high level of E2F1, stathmin1, or TACC3 not only associates with tumor size, lymph node metastasis, TNM stage, and distant metastasis, but predicts poor survival in CRC patients. Conclusions E2F1 drives the cell cycle of CRC by promoting spindle assembly, in which E2F1-induced stathmin1 and TACC3 enhance the stability of spindle fiber.

Funder

Natural Science Foundation of Zhejiang Province

Medical Science and Technology Project of Zhejiang Province

Science and Technology Plan Project of Taizhou

Science and Technology Program of Sanmen County Public Technology Social Development Project

Youth Medical Science and Technology Innovation Project of Xuzhou Municipal Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3