Asiaticoside inhibits TGF-β1-induced mesothelial-mesenchymal transition and oxidative stress via the Nrf2/HO-1 signaling pathway in the human peritoneal mesothelial cell line HMrSV5

Author:

Zhao Junyi,Shi Jun,Shan Yun,Yu Manshu,Zhu Xiaolin,Zhu Yilin,Liu Li,Sheng Meixiao

Abstract

Abstract Background Peritoneal fibrosis (PF) is a frequent complication caused by peritoneal dialysis (PD). Peritoneal mesothelial cells (PMCs), the first barrier of the peritoneum, play an important role in maintaining structure and function in the peritoneum during PD. Mesothelial-mesenchymal transition (MMT) and oxidative stress of PMCs are two key processes of PF. Purpose To elucidate the efficacy and possible mechanism of asiaticoside inhibition of MMT and ROS generation in TGF-β1-induced PF in human peritoneal mesothelial cells (HPMCs). Methods MMT and ROS generation of HPMCs were induced by TGF-β1. To explain the anti-MMT and antioxidant role of asiaticoside, varied doses of asiaticoside, oxygen radical scavenger (NAC), TGF-β receptor kinase inhibitor (LY2109761) and Nrf2 inhibitor (ML385) were used separately. Immunoblots were used to detect the expression of signaling associated proteins. DCFH-DA was used to detect the generation of ROS. Transwell migration assay and wound healing assay were used to verify the capacity of asiaticoside to inhibit MMT. Immunofluorescence assay was performed to observe the subcellular translocation of Nrf2 and expression of HO-1. Results Asiaticoside inhibited TGF-β1-induced MMT and suppressed Smad signaling in a dose-dependent manner. Migration and invasion activities of HPMCs were decreased by asiaticoside. Asiaticoside decreased TGF-β1-induced ROS, especially in a high dose (150 μM) for 6 h. Furthermore, ML385 partly abolished the inhibitory effect of asiaticoside on MMT, ROS and p-Smad2/3. Conclusions Asiaticoside inhibited the TGF-β1-induced MMT and ROS via Nrf2 activation, thus protecting the peritoneal membrane and preventing PF.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Leading Talent Project in Jiangsu Province

Summit Scholar Project in Jiangsu Province Hospital of Chinese Medicine

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3