Phosphoproteomics revealed cellular signals immediately responding to disruption of cancer amino acid homeostasis induced by inhibition of l-type amino acid transporter 1

Author:

Okanishi Hiroki,Ohgaki Ryuichi,Xu Minhui,Endou Hitoshi,Kanai Yoshikatsu

Abstract

Abstract Background Cancer-upregulated l-type amino acid transporter 1 (LAT1; SLC7A5) supplies essential amino acids to cancer cells. LAT1 substrates are not only needed for cancer rapid growth, but involved in cellular signaling. LAT1 has been proposed as a potential target for cancer treatment—its inhibitor, JPH203, is currently in clinical trials and targets biliary tract cancer (BTC). Here, we revealed to what extent LAT1 inhibitor affects intracellular amino acid content and what kind of cellular signals are directly triggered by LAT1 inhibition. Methods Liquid chromatography assay combined with o-phthalaldehyde- and 9-fluorenyl-methylchloroformate-based derivatization revealed changes in intracellular amino acid levels induced by LAT1 inhibition with JPH203 treatment in three BTC cell lines. Tandem mass tag-based quantitative phosphoproteomics characterized the effect of JPH203 treatment on BTC cells, and suggested key regulators in LAT1-inhibited cells. We further studied one of the key regulators, CK2 protein kinase, by using Western blot, enzymatic activity assay, and co-immunoprecipitation. We evaluated anticancer effects of combination of JPH203 with CK2 inhibitor using cell growth and would healing assay. Results JPH203 treatment decreased intracellular levels of LAT1 substrates including essential amino acids of three BTC cell lines, immediately and drastically. We also found levels of some of these amino acids were partially recovered after longer-time treatment. Therefore, we performed phosphoproteomics with short-time JPH203 treatment prior to the cellular compensatory response, and revealed hundreds of differentially phosphorylated sites. Commonly downregulated phosphorylation sites were found on proteins involved in the cell cycle and RNA splicing. Our phosphoproteomics also suggested key regulators immediately responding to LAT1 inhibition. Focusing on one of these regulators, protein kinase CK2, we revealed LAT1 inhibition decreased phosphorylation of CK2 substrate without changing CK2 enzymatic activity. Furthermore, LAT1 inhibition abolished interaction between CK2 and its regulatory protein NOLC1, which suggests regulatory mechanism of CK2 substrate protein specificity controlled by LAT1 inhibition. Moreover, we revealed that the combination of JPH203 with CK2 inhibitor resulted in the enhanced inhibition of proliferation and migration of BTC cells. Conclusion This study provides new perspectives on LAT1-dependent cellular processes and a rationale for therapeutics targeting reprogrammed cancer metabolism.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3