Author:
Shen Yao,Zhao Pan,Dong Kewei,Wang Jiajia,Li Huichen,Li Mengyang,Li Ruikai,Chen Suning,Shen Yuxia,Liu Zhiyu,Xie Mianjiao,Shen Peng,Zhang Jian
Abstract
Abstract
Background
Protein arginine methyltransferase 5 (PRMT5) is upregulated in multiple tumors and plays a pivotal role in cancer cell proliferation. However, the role of PRMT5 in colorectal cancer remains poorly understood.
Methods
We detected the expression level of PRMT5 and glycolytic enzymes using online databases and colorectal cancer cell lines by immunohistochemical staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting. And MTT and colony formation assays were conducted to investigate cell proliferation. Then, we evaluated ECAR and OCR levels using a biological energy analyzer to investigate the energy status of colorectal cancer, and the transcriptional regulation was detected by dual luciferase reporter assay and ChIP assay. Finally, the efficacy of combined treatment of tadalafil and 5-FU was verified.
Results
PRMT5 was highly expressed in colorectal cancer tissues compared with their normal counterparts and correlated with poor prognosis in CRC patients. Then, we demonstrated that PRMT5 knockdown or loss of function attenuated the viability of CRC cells, while overexpression of PRMT5 promoted cell proliferation. Mechanistically, PRMT5 enhanced glycolysis through transcriptionally activating LDHA expression. In addition, the PRMT5 inhibitor, tadalafil, rendered CRC cells sensitive to antitumor agent 5-FU in vitro and in vivo.
Conclusions
Our data indicates that PRMT5 promoted colorectal cancer proliferation partially through activating glycolysis and may be a potential target for colorectal cancer therapy.
Funder
State Key Laboratory of Cancer Biology Project
China Postdoctoral Science Foundation
National Natural Science Foundation of China
Research and development projects in Shaanxi Province
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献