Author:
Yu Jia-Le,Su Yun-Fei,Zhang Chen,Jin Li,Lin Xian-Hua,Chen Lu-Ting,Huang He-Feng,Wu Yan-Ting
Abstract
Abstract
Background
Fertility awareness and menses prediction are important for improving fecundability and health management. Previous studies have used physiological parameters, such as basal body temperature (BBT) and heart rate (HR), to predict the fertile window and menses. However, their accuracy is far from satisfactory. Additionally, few researchers have examined irregular menstruators. Thus, we aimed to develop fertile window and menstruation prediction algorithms for both regular and irregular menstruators.
Methods
This was a prospective observational cohort study conducted at the International Peace Maternity and Child Health Hospital in Shanghai, China. Participants were recruited from August 2020 to November 2020 and followed up for at least four menstrual cycles. Participants used an ear thermometer to assess BBT and wore the Huawei Band 5 to record HR. Ovarian ultrasound and serum hormone levels were used to determine the ovulation day. Menstruation was self-reported by women. We used linear mixed models to assess changes in physiological parameters and developed probability function estimation models to predict the fertile window and menses with machine learning.
Results
We included data from 305 and 77 qualified cycles with confirmed ovulations from 89 regular menstruators and 25 irregular menstruators, respectively. For regular menstruators, BBT and HR were significantly higher during fertile phase than follicular phase and peaked in the luteal phase (all P < 0.001). The physiological parameters of irregular menstruators followed a similar trend. Based on BBT and HR, we developed algorithms that predicted the fertile window with an accuracy of 87.46%, sensitivity of 69.30%, specificity of 92.00%, and AUC of 0.8993 and menses with an accuracy of 89.60%, sensitivity of 70.70%, and specificity of 94.30%, and AUC of 0.7849 among regular menstruators. For irregular menstruators, the accuracy, sensitivity, specificity and AUC were 72.51%, 21.00%, 82.90%, and 0.5808 respectively, for fertile window prediction and 75.90%, 36.30%, 84.40%, and 0.6759 for menses prediction.
Conclusions
By combining BBT and HR recorded by the Huawei Band 5, our algorithms achieved relatively ideal performance for predicting the fertile window and menses among regular menstruators. For irregular menstruators, the algorithms showed potential feasibility but still need further investigation.
Trial registration
ChiCTR2000036556. Registered 24 August 2020.
Funder
CAMS Innovation Fund for Medical Sciences
National Natural Science Foundation of China
International Science and Technology Collaborative Fund of Shanghai
Clinical Research Plan of Shanghai Shenkang Hospital Development Center
Science and Technology Innovation Fund of Shanghai Jiao Tong University
Huawei
Collaborative Innovation Program of Shanghai Municipal Health Commission
Shanghai Frontiers Science Center of Reproduction and Development
National Key Research and Development Program of China
Program of Shanghai Academic Research Leader
Publisher
Springer Science and Business Media LLC
Subject
Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynecology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献