Tracking of menstrual cycles and prediction of the fertile window via measurements of basal body temperature and heart rate as well as machine-learning algorithms

Author:

Yu Jia-Le,Su Yun-Fei,Zhang Chen,Jin Li,Lin Xian-Hua,Chen Lu-Ting,Huang He-Feng,Wu Yan-Ting

Abstract

Abstract Background Fertility awareness and menses prediction are important for improving fecundability and health management. Previous studies have used physiological parameters, such as basal body temperature (BBT) and heart rate (HR), to predict the fertile window and menses. However, their accuracy is far from satisfactory. Additionally, few researchers have examined irregular menstruators. Thus, we aimed to develop fertile window and menstruation prediction algorithms for both regular and irregular menstruators. Methods This was a prospective observational cohort study conducted at the International Peace Maternity and Child Health Hospital in Shanghai, China. Participants were recruited from August 2020 to November 2020 and followed up for at least four menstrual cycles. Participants used an ear thermometer to assess BBT and wore the Huawei Band 5 to record HR. Ovarian ultrasound and serum hormone levels were used to determine the ovulation day. Menstruation was self-reported by women. We used linear mixed models to assess changes in physiological parameters and developed probability function estimation models to predict the fertile window and menses with machine learning. Results We included data from 305 and 77 qualified cycles with confirmed ovulations from 89 regular menstruators and 25 irregular menstruators, respectively. For regular menstruators, BBT and HR were significantly higher during fertile phase than follicular phase and peaked in the luteal phase (all P < 0.001). The physiological parameters of irregular menstruators followed a similar trend. Based on BBT and HR, we developed algorithms that predicted the fertile window with an accuracy of 87.46%, sensitivity of 69.30%, specificity of 92.00%, and AUC of 0.8993 and menses with an accuracy of 89.60%, sensitivity of 70.70%, and specificity of 94.30%, and AUC of 0.7849 among regular menstruators. For irregular menstruators, the accuracy, sensitivity, specificity and AUC were 72.51%, 21.00%, 82.90%, and 0.5808 respectively, for fertile window prediction and 75.90%, 36.30%, 84.40%, and 0.6759 for menses prediction. Conclusions By combining BBT and HR recorded by the Huawei Band 5, our algorithms achieved relatively ideal performance for predicting the fertile window and menses among regular menstruators. For irregular menstruators, the algorithms showed potential feasibility but still need further investigation. Trial registration ChiCTR2000036556. Registered 24 August 2020.

Funder

CAMS Innovation Fund for Medical Sciences

National Natural Science Foundation of China

International Science and Technology Collaborative Fund of Shanghai

Clinical Research Plan of Shanghai Shenkang Hospital Development Center

Science and Technology Innovation Fund of Shanghai Jiao Tong University

Huawei

Collaborative Innovation Program of Shanghai Municipal Health Commission

Shanghai Frontiers Science Center of Reproduction and Development

National Key Research and Development Program of China

Program of Shanghai Academic Research Leader

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynecology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3