Upregulated Talin1 synergistically boosts β-estradiol-induced proliferation and pro-angiogenesis of eutopic and ectopic endometrial stromal cells in adenomyosis

Author:

Wang Yi-yi,Duan HuaORCID,Wang Sha,Quan Yong-jun,Huang Jun-hua,Guo Zheng-chen

Abstract

AbstractAdenomyosis (ADS) is an estrogen-dependent gynecological disease with unspecified etiopathogenesis. Local hyperestrogenism may serve a key role in contributing to the origin of ADS. Talin1 is mostly identified to be overexpressed and involved in the progression of numerous human carcinomas through mediating cell proliferation, adhesion and motility. Whether Talin1 exerts an oncogenic role in the pathogenesis of ADS and puts an extra impact on the efficacy of estrogen, no relevant data are available yet. Here we demonstrated that the adenomyotic eutopic and ectopic endometrial stromal cells (ADS_Eu_ESC and ADS_Ec_ESC) treated with β-estradiol (β-E2) presented stronger proliferative and pro-angiogenetic capacities, accompanied by increased expression of PCNA, Ki67, VEGFB and ANGPTL4 proteins. Meanwhile, these promoting effects were partially abrogated by Fulvestrant (ICI 182780, an estrogen-receptor antagonist). Aberrantly upregulation of Talin1 mRNA and protein level was observed in ADS endometrial specimens and stromal cells. Through performing functional experiments in vitro, we further determined that merely overexpression of Talin1 (OV-Talin1) also enhanced ADS stromal cell proliferation and pro-angiogenesis, while the most pronounced facilitating effects were found in the co-intervention group of OV-Talin1 plus β-E2 treatment. Results from the xenograft nude mice model showed that the hypodermic endometrial lesions from co-intervention group had the highest mean weight and volume, compared with that of individual OV-Talin1 or β-E2 treatment. The expression levels of PCNA, Ki67, VEGFB and ANGPTL4 in the lesions were correspondingly elevated the most in the co-intervention group. Our findings unveiled that overexpressed Talin1 might cooperate withβ-E2 in stimulating ADS endometrial stromal cell proliferation and neovascularization, synergistically promoting the growth and survival of ectopic lesions. These results may be beneficial to provide a new insight for clarifying the pathogenesis of ADS.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynaecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3