Abstract
AbstractThe maturation of spermatozoa is a regulated process, influenced by genes expressing essential secreted proteins in the proximal epididymis. Recent genetic studies in rodents have identified the non-sex steroidal molecular signals that regulate gene expression in the proximal epididymis. Germ cells in the testis secrete ligand proteins into the seminiferous tubule lumen The ligand proteins travel through the male reproductive tract lumen to the epididymis, where they bind to receptors, triggering the differentiation of the luminal epithelium for sperm maturation. It is, however, not fully unveiled if such a testis-epididymis trans-luminal signaling mechanism exists in other species, especially humans. In the present study, the rodent-type testis-epididymis trans-luminal signaling in the human male reproductive tract was evaluated in a step-by-step manner by analyzing testis and epididymis gene expression and signaling mediator protein function. There was a significant correlation between the epididymal expressions of mouse genes upregulated by the trans-luminal signaling and those of their human orthologs, as evaluated by the correlation coefficient of 0.604. The transcript expression of NELL2 and NICOL encoding putative ligand proteins was also observed in human testicular cells. In vitro experiments demonstrated that purified recombinant human NELL2 and NICOL formed a molecular complex with similar properties to rodent proteins, which was evaluated by a dissociation equilibrium constant of 110 nM. Recombinant human NELL2 also specifically bound to its putative receptor human ROS1 in vitro. Collectively, these findings suggest that the rodent-type testis-epididymis secreted signaling mechanism is also possible in the human male reproductive tract.
Funder
Japan Society for the Promotion of Science
Japan Science and Technology Agency
The Japan Foundation for Applied Enzymology
The Chugai Foundation for Innovative Drug Discovery Science
The UBE Foundation
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Kirchhoff C, Habben I, Ivell R, Krull N. A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol Reprod. 1991;45:350–7.
2. Kato M, Sung WK, Kato K, Goodman DS. Immunohistochemical studies on the localization of cellular retinol-binding protein in rat testis and epididymis. Biol Reprod. 1985;32:173–89.
3. Cornwall GA, Orgebin-Crist MC, Hann SR. The CRES gene: a unique testis-regulated gene related to the cystatin family is highly restricted in its expression to the proximal region of the mouse epididymis. Mol Endocrinol. 1992;6:1653–64.
4. Krutskikh A, De Gendt K, Sharp V, Verhoeven G, Poutanen M, Huhtaniemi I. Targeted inactivation of the androgen receptor gene in murine proximal epididymis causes epithelial hypotrophy and obstructive azoospermia. Endocrinology. 2011;152:689–96.
5. Joseph A, Shur BD, Ko C, Chambon P, Hess RA. Epididymal hypo-osmolality induces abnormal sperm morphology and function in the estrogen receptor alpha knockout mouse. Biol Reprod. 2010;82:958–67.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献