The effect of growth hormone on the metabolome of follicular fluid in patients with diminished ovarian reserve

Author:

He Fan,Wang Fang,Yang Yang,Yuan Zhi,Sun Chengguang,Zou Heng,Chen Huijia,Yi Hongliang,Gao Shan Hu,Zhang Shen,Hu Lina,Han Ting-li

Abstract

Abstract Background Increasing evidence supports that the co-treatment with growth hormone (GH) enhances ovarian response and oocyte quality during controlled ovarian stimulation (COS) in patients with diminished ovarian reserve (DOR). The composition of follicular fluid (FF) plays an essential role in oocyte development and mirrors the communication occurring between the oocyte and follicular microenvironment. However, the effect of GH on the FF metabolome remains unclear. Methods This prospective observational study recruited DOR patients undergoing in vitro fertilization (IVF) cycles with minimal stimulation protocol for COS. Each patient receiving GH co-treatment was matched to a patient without GH co-treatment by propensity score matching. The FF was collected after isolating oocytes and assayed by gas chromatograph-mass spectrometry (GC-MS) metabolomics. The Pearson correlation was performed to evaluate the relationship between the number of oocytes retrieved and the levels of differential metabolites. The KEGG database was used to map differential metabolites onto various metabolic pathways. Results One hundred thirty-four FF metabolites were identified by GC-MS metabolomics. Twenty-four metabolites, including glutathione, itaconic acid and S-adenosylmethionin (SAM) showed significant differences between the GH and control groups (p-value < 0.05 and q-value < 0.1). In addition, the number of oocytes retrieved was significantly higher in the GH group compared to the control group (3 vs 2, p = 0.04) and correlated with the levels of five differential metabolites. Among them, the levels of antioxidant metabolite itaconic acid were upregulated by GH administration, while SAM levels were downregulated. Conclusions The co-treatment with GH during COS may improve oocyte development by altering FF metabolite profiles in DOR patients. However, given the downregulation of SAM, a regulator of genomic imprinting, the potential risk of imprinting disturbances should not be neglected.

Funder

National Natural Science Foundation of China

Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University

Medical Research Foundation of Sichuan Medical Association

Natural Science Foundation of Chongqing

Chongqing Municipal Education Commission

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3