G6PC indicated poor prognosis in cervical cancer and promoted cervical carcinogenesis in vitro and in vivo

Author:

Zhu Kun,Deng Chunling,Du Pan,Liu Taorui,Piao Junjie,Piao Yingshi,Yang Meng,Chen LiyanORCID

Abstract

Abstract Background The glucose-6-phosphatase catalytic subunit (G6PC) is a key enzyme that is involved in gluconeogenesis and glycogen decomposition during glycometabolism. Studies have shown that G6PC is abnormally expressed in various cancers and participates in the proliferation and metastasis of tumors. However, the role of G6PC in cervical cancer remains poorly established. Methods To analyze the expression of G6PC in cervical cancer tissues in patients by immunohistochemistry. Effects of G6PC deregulation on cervical cancer phenotype were determined using MTT, colony formation, transwell, and wound-healing assays. And constructed a nude mouse xenograft tumor model and CAM assay in vivo. The effect of G6PC on glycolysis in cervical cancer was also evaluated. Effect of G6PC on PI3K/AKT/mTOR pathway was detected by Western blot assay. Results In this study, G6PC expression was found to be upregulated in cervical cancer tissues, and this upregulated expression was associated with LN metastasis, clinical stage, recurrence, and disease-free survival and overall survival rates, indicating that G6PC could serve as a novel marker of early diagnosis in cervical cancer. G6PC promoted proliferation, invasion, epithelial mesenchymal transition (EMT) progression, and angiogenesis of cervical cancer cells. Mechanistically, G6PC activated PI3K/AKT/mTOR pathways. The PI3K/AKT pathway inhibitor, LY294002 could partially attenuate the effect. Conclusions G6PC plays a key role in the progression of cervical cancer, and overexpressed G6PC is closely related to patient LN metastasis, clinical stage, recurrence and shortened survival. G6PC promoted cervical cancer proliferation, invasion, migration, EMT progression, and angiogenesis, partially through activating the PI3K/AKT pathway. G6PC, as a metabolic gene, not only plays a role in metabolism, but also participates in the development of cervical cancer. Its complex metabolic and non metabolic effects may be a potential therapeutic target and worthy of further study.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3