An artificial intelligence model (euploid prediction algorithm) can predict embryo ploidy status based on time-lapse data

Author:

Huang Bo,Tan Wei,Li Zhou,Jin LeiORCID

Abstract

Abstract Background For the association between time-lapse technology (TLT) and embryo ploidy status, there has not yet been fully understood. TLT has the characteristics of large amount of data and non-invasiveness. If we want to accurately predict embryo ploidy status from TLT, artificial intelligence (AI) technology is a good choice. However, the current work of AI in this field needs to be strengthened. Methods A total of 469 preimplantation genetic testing (PGT) cycles and 1803 blastocysts from April 2018 to November 2019 were included in the study. All embryo images are captured during 5 or 6 days after fertilization before biopsy by time-lapse microscope system. All euploid embryos or aneuploid embryos are used as data sets. The data set is divided into training set, validation set and test set. The training set is mainly used for model training, the validation set is mainly used to adjust the hyperparameters of the model and the preliminary evaluation of the model, and the test set is used to evaluate the generalization ability of the model. For better verification, we used data other than the training data for external verification. A total of 155 PGT cycles from December 2019 to December 2020 and 523 blastocysts were included in the verification process. Results The euploid prediction algorithm (EPA) was able to predict euploid on the testing dataset with an area under curve (AUC) of 0.80. Conclusions The TLT incubator has gradually become the choice of reproductive centers. Our AI model named EPA that can predict embryo ploidy well based on TLT data. We hope that this system can serve all in vitro fertilization and embryo transfer (IVF-ET) patients in the future, allowing embryologists to have more non-invasive aids when selecting the best embryo to transfer.

Funder

young scientists fund

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynecology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3