FMR1 allelic complexity in premutation carriers provides no evidence for a correlation with age at amenorrhea

Author:

Rodrigues BárbaraORCID,Sousa VanessaORCID,Yrigollen Carolyn M.ORCID,Tassone FloraORCID,Villate OlatzORCID,Allen Emily G.ORCID,Glicksman Anne,Tortora Nicole,Nolin Sarah L.ORCID,Nogueira António J. A.ORCID,Jorge PaulaORCID

Abstract

Abstract Background Premutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene, defined as between 55 and 200 CGGs, have been implicated in fragile X-associated primary ovarian insufficiency (FXPOI). Only 20% of female premutation carriers develop early ovulatory dysfunction, the reason for this incomplete penetrance is unknown. This study validated the mathematical model in premutation alleles, after assigning each allele a score representing allelic complexity. Subsequently, allelic scores were used to investigate the impact of allele complexity on age at amenorrhea for 58 premutation cases (116 alleles) previously published. Methods The allelic score was determined using a formula previously described by our group. The impact of each allelic score on age at amenorrhea was analyzed using Pearson’s test and a contour plot generated to visualize the effect. Results Correlation of allelic score revealed two distinct complexity behaviors in premutation alleles. No significant correlation was observed between the allelic score of premutation alleles and age at amenorrhea. The same lack of significant correlation was observed regarding normal-sized alleles, despite a nearly significant trend. Conclusions Our results suggest that the use of allelic scores combination have the potential to explain female infertility, namely the development of FXPOI, or ovarian dysfunction, despite the lack of correlation with age at amenorrhea. Such a finding is of great clinical significance for early identification of females at risk of ovulatory dysfunction, enhancement of fertility preservation techniques, and increasing the probability for a successful pregnancy in females with premutations. Additional investigation is necessary to validate this hypothesis.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3