Downregulation of hsa_circ_0005243 induces trophoblast cell dysfunction and inflammation via the β-catenin and NF-κB pathways

Author:

Wang Huiyan,Zhou Wenbo,She Guangtong,Yu Bin,Sun Lizhou

Abstract

Abstract Background Gestational diabetes mellitus (GDM) is a common complication in pregnancy that poses a serious threat to the health of both mother and child. While the specific etiology and pathogenesis of this disease are not fully understood, it is thought to arise due to a combination of insulin resistance, inflammation, and genetic factors. Circular RNAs (circRNAs) are a special kind of non-coding RNA that have attracted significant attention in recent years due to their diverse activities, including a potential regulatory role in pregnancy-related diseases, such as GDM. Methods We previously reported the existence of a novel circRNA, hsa_circ_0005243, which was identified by RNA sequencing. In this study, we examined its expression in 20 pregnant women with GDM and 20 normal pregnant controls using quantitative reverse transcription PCR analysis. Subsequent in vitro experiments were conducted following hsa_circ_0005243 knockdown in HTR-8/SVneo cells to examine the role of hsa_circ_0005243 in cell proliferation and migration, as well as the secretion of inflammatory factors such as tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). Finally, we examined the expression of β-catenin and nuclear factor kappa-B (NF-κB) signaling pathways to assess their role in GDM pathogenesis. Results Expression of hsa_circ_0005243 was significantly reduced in both the placenta and plasma of GDM patients. Knockdown of hsa_circ_0005243 in trophoblast cells significantly suppressed cell proliferation and migration ability. In addition, increased secretion of inflammatory factors (TNF-α and IL-6) was observed after hsa_circ_0005243 depletion. Further analyses showed that knockdown of hsa_circ_0005243 reduced the expression of β-catenin and increased nuclear NF-κB p65 nuclear translocation. Conclusions Downregulation of hsa_circ_0005243 may be associated with the pathogenesis of GDM via the regulation of β-catenin and NF-κB signal pathways, suggesting a new potential therapeutic target for GDM.

Funder

Talent Project of Provincial Science and Technology Deparment

Major Project of Changzhou Commission of Health

Jiangsu natural science foundation general project

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3