Author:
Spee Bart,Mandigers Paul JJ,Arends Brigitte,Bode Peter,van den Ingh Ted SGAM,Hoffmann Gaby,Rothuizen Jan,Penning Louis C
Abstract
Abstract
Background
The role of copper accumulation in the onset of hepatitis is still unclear. Therefore, we investigated a spontaneous disease model of primary copper-toxicosis in Doberman pinschers so to gain insights into the pathophysiology of copper toxicosis, namely on genes involved in copper metabolism and reactive oxygen species (ROS) defences.
Results
We used quantitative real-time PCR to determine differentially expressed genes within a target panel, investigating different groups ranging from copper-associated subclinical hepatitis (CASH) to a clinical chronic hepatitis with high hepatic copper concentrations (Doberman hepatitis, DH). Furthermore, a non-copper associated subclinical hepatitis group (N-CASH) with normal hepatic copper concentrations was added as a control. Most mRNA levels of proteins involved in copper binding, transport, and excretion were around control values in the N-CASH and CASH group. In contrast, many of these (including ATP7A, ATP7B, ceruloplasmin, and metallothionein) were significantly reduced in the DH group. Measurements on defences against oxidative stress showed a decrease in gene-expression of superoxide dismutase 1 and catalase in both groups with high copper. Moreover, the anti-oxidative glutathione molecule was clearly reduced in the DH group.
Conclusion
In the DH group the expression of gene products involved in copper efflux was significantly reduced, which might explain the high hepatic copper levels in this disease. ROS defences were most likely impaired in the CASH and DH group. Overall, this study describes a new variant of primary copper toxicosis and could provide a molecular basis for equating future treatments in dog and in man.
Publisher
Springer Science and Business Media LLC
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献