Nomogram-based risk prediction of macrosomia: a case-control study

Author:

Du Jing,Zhang Xiaomei,Chai Sanbao,Zhao Xin,Sun Jianbin,Yuan Ning,Yu Xiaofeng,Zhang Qiaoling

Abstract

Abstract Background Macrosomia is closely associated with poor maternal and fetal outcome. But there is short of studies on the risk of macrosomia in early pregnancy. The purpose of this study is to establish a nomogram for predicting macrosomia in the first trimester. Methods A case-control study involving 1549 pregnant women was performed. According to the birth weight of newborn, the subjects were divided into macrosomia group and non-macrosomia group. The risk factors for macrosomia in early pregnancy were analyzed by multivariate logistic regression. A nomogram was used to predict the risk of macrosomia. Results The prevalence of macrosomia was 6.13% (95/1549) in our hospital. Multivariate logistic regression analysis showed that prepregnancy overweight (OR: 2.13 95% CI: 1.18–3.83)/obesity (OR: 3.54, 95% CI: 1.56–8.04), multiparity (OR:1.88, 95% CI: 1.16–3.04), the history of macrosomia (OR: 36.97, 95% CI: 19.90–68.67), the history of GDM/DM (OR: 2.29, 95% CI: 1.31–3.98), the high levels of HbA1c (OR: 1.76, 95% CI: 1.00–3.10) and TC (OR: 1.36, 95% CI: 1.00–1.84) in the first trimester were the risk factors of macrosomia. The area under ROC (the receiver operating characteristic) curve of the nomogram model was 0.807 (95% CI: 0.755–0.859). The sensitivity and specificity of the model were 0.716 and 0.777, respectively. Conclusion The nomogram model provides an effective mothed for clinicians to predict macrosomia in the first trimester.

Funder

the Capital Featured Clinical Application Research Project

the key project of Peking University International Hospital Fund

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3