Author:
Du Jing,Zhang Xiaomei,Chai Sanbao,Zhao Xin,Sun Jianbin,Yuan Ning,Yu Xiaofeng,Zhang Qiaoling
Abstract
Abstract
Background
Macrosomia is closely associated with poor maternal and fetal outcome. But there is short of studies on the risk of macrosomia in early pregnancy. The purpose of this study is to establish a nomogram for predicting macrosomia in the first trimester.
Methods
A case-control study involving 1549 pregnant women was performed. According to the birth weight of newborn, the subjects were divided into macrosomia group and non-macrosomia group. The risk factors for macrosomia in early pregnancy were analyzed by multivariate logistic regression. A nomogram was used to predict the risk of macrosomia.
Results
The prevalence of macrosomia was 6.13% (95/1549) in our hospital. Multivariate logistic regression analysis showed that prepregnancy overweight (OR: 2.13 95% CI: 1.18–3.83)/obesity (OR: 3.54, 95% CI: 1.56–8.04), multiparity (OR:1.88, 95% CI: 1.16–3.04), the history of macrosomia (OR: 36.97, 95% CI: 19.90–68.67), the history of GDM/DM (OR: 2.29, 95% CI: 1.31–3.98), the high levels of HbA1c (OR: 1.76, 95% CI: 1.00–3.10) and TC (OR: 1.36, 95% CI: 1.00–1.84) in the first trimester were the risk factors of macrosomia. The area under ROC (the receiver operating characteristic) curve of the nomogram model was 0.807 (95% CI: 0.755–0.859). The sensitivity and specificity of the model were 0.716 and 0.777, respectively.
Conclusion
The nomogram model provides an effective mothed for clinicians to predict macrosomia in the first trimester.
Funder
the Capital Featured Clinical Application Research Project
the key project of Peking University International Hospital Fund
Publisher
Springer Science and Business Media LLC
Subject
Obstetrics and Gynecology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献