Author:
Sorel Manon,Gachon Bertrand,Coste-Mazeau Perrine,Aubard Yves,Pierre Fabrice,Fradet Laetitia
Abstract
Abstract
Background
The objective of this study was to identify and qualify, by means of a three-dimensional kinematic analysis, the postures and movements of obstetricians during a simulated forceps birth, and then to study the association of the obstetricians’ experience with the technique adopted.
Method
Fifty-seven volunteer obstetricians, 20 from the Limoges and 37 from the Poitiers University hospitals, were included in this multi-centric study. They were classified into 3 groups: beginners, intermediates, and experts, beginners having performed fewer than 10 forceps deliveries in real conditions, intermediates between 10 and 100, and experts more than 100. The posture and movements of the obstetricians were recorded between December 2020 and March 2021 using an optoelectronic motion capture system during simulated forceps births. Joint angles qualifying these postures and movements were analysed between the three phases of the foetal traction. These phases were defined by the passage of a virtual point associated with the forceps blade through two anatomical planes: the mid-pelvis and the pelvic outlet. Then, a consolidated ascending hierarchical classification (AHC) was applied to these data in order to objectify the existence of groups of similar behaviours.
Results
The AHC distinguished four different postures adopted when crossing the first plane and three different traction techniques. 48% of the beginners adopted one of the two raised posture, 22% being raised without trunk flexion and 26% raised with trunk flexion. Conversely, 58% of the experts positioned themselves in a “chevalier servant” posture (going down on one knee) and 25% in a “squatting” posture before initiating traction. The results also show that the joint movement amplitude tends to reduce with the level of expertise.
Conclusion
Forceps delivery was performed in different ways, with the experienced obstetricians favouring postures that enabled observation at the level of the maternal perineum and techniques reducing movement amplitude. The first perspective of this work is to relate these different techniques to the traction force generated. The results of these studies have the potential to contribute to the training of obstetricians in forceps delivery, and to improve the safety of women and newborns.
Publisher
Springer Science and Business Media LLC