Author:
Zou Yujiao,Zhang Yan,Yin Zhenhua,Wei Lili,Lv Bohan,Wu Yili
Abstract
Abstract
Aim
To establish a nomogram model to predict the risk of macrosomia in pregnant women with gestational diabetes mellitus in China.
Methods
We retrospectively collected the medical records of 783 pregnant women with gestational diabetes who underwent prenatal examinations and delivered at the Affiliated Hospital of Qingdao University from October 2019 to October 2020. The pregnant women were randomly divided into two groups in a 4:1 ratio to generate and validate the model. The independent risk factors for macrosomia in pregnant women with gestational diabetes mellitus were analyzed by multivariate logistic regression, and the nomogram model to predict the risk of macrosomia in pregnant women with gestational diabetes mellitus was established and verified by R software.
Results
Logistic regression analysis showed that prepregnancy body mass index, weight gain during pregnancy, fasting plasma glucose, triglycerides, biparietal diameter and amniotic fluid index were independent risk factors for macrosomia (P < 0.05). The areas under the ROC curve for internal and external validation of the model were 0.813 (95 % confidence interval 0.754–0.862) and 0.903 (95 % confidence interval 0.588–0.967), respectively. The calibration curve was a straight line with a slope close to 1.
Conclusions
In this study, we constructed a nomogram model to predict the risk of macrosomia in pregnant women with gestational diabetes mellitus. The model has good discrimination and calibration abilities, which can help clinical healthcare staff accurately predict macrosomia in pregnant women with gestational diabetes mellitus.
Funder
the Qingdao Science and Technology Bureau
Publisher
Springer Science and Business Media LLC
Subject
Obstetrics and Gynaecology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献