Establishment of a nomogram model to predict macrosomia in pregnant women with gestational diabetes mellitus

Author:

Zou Yujiao,Zhang Yan,Yin Zhenhua,Wei Lili,Lv Bohan,Wu Yili

Abstract

Abstract Aim To establish a nomogram model to predict the risk of macrosomia in pregnant women with gestational diabetes mellitus in China. Methods We retrospectively collected the medical records of 783 pregnant women with gestational diabetes who underwent prenatal examinations and delivered at the Affiliated Hospital of Qingdao University from October 2019 to October 2020. The pregnant women were randomly divided into two groups in a 4:1 ratio to generate and validate the model. The independent risk factors for macrosomia in pregnant women with gestational diabetes mellitus were analyzed by multivariate logistic regression, and the nomogram model to predict the risk of macrosomia in pregnant women with gestational diabetes mellitus was established and verified by R software. Results Logistic regression analysis showed that prepregnancy body mass index, weight gain during pregnancy, fasting plasma glucose, triglycerides, biparietal diameter and amniotic fluid index were independent risk factors for macrosomia (P < 0.05). The areas under the ROC curve for internal and external validation of the model were 0.813 (95 % confidence interval 0.754–0.862) and 0.903 (95 % confidence interval 0.588–0.967), respectively. The calibration curve was a straight line with a slope close to 1. Conclusions In this study, we constructed a nomogram model to predict the risk of macrosomia in pregnant women with gestational diabetes mellitus. The model has good discrimination and calibration abilities, which can help clinical healthcare staff accurately predict macrosomia in pregnant women with gestational diabetes mellitus.

Funder

the Qingdao Science and Technology Bureau

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynaecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3