Machine learning guided postnatal gestational age assessment using new-born screening metabolomic data in South Asia and sub-Saharan Africa

Author:

Sazawal Sunil,Ryckman Kelli K.,Das Sayan,Khanam Rasheda,Nisar Imran,Jasper Elizabeth,Dutta Arup,Rahman Sayedur,Mehmood Usma,Bedell Bruce,Deb Saikat,Chowdhury Nabidul Haque,Barkat Amina,Mittal Harshita,Ahmed Salahuddin,Khalid Farah,Raqib Rubhana,Manu Alexander,Yoshida Sachiyo,Ilyas Muhammad,Nizar Ambreen,Ali Said Mohammed,Baqui Abdullah H.,Jehan Fyezah,Dhingra Usha,Bahl Rajiv

Abstract

Abstract Background Babies born early and/or small for gestational age in Low and Middle-income countries (LMICs) contribute substantially to global neonatal and infant mortality. Tracking this metric is critical at a population level for informed policy, advocacy, resources allocation and program evaluation and at an individual level for targeted care. Early prenatal ultrasound examination is not available in these settings, gestational age (GA) is estimated using new-born assessment, last menstrual period (LMP) recalls and birth weight, which are unreliable. Algorithms in developed settings, using metabolic screen data, provided GA estimates within 1–2 weeks of ultrasonography-based GA. We sought to leverage machine learning algorithms to improve accuracy and applicability of this approach to LMICs settings. Methods This study uses data from AMANHI-ACT, a prospective pregnancy cohorts in Asia and Africa where early pregnancy ultrasonography estimated GA and birth weight are available and metabolite screening data in a subset of 1318 new-borns were also available. We utilized this opportunity to develop machine learning (ML) algorithms. Random Forest Regressor was used where data was randomly split into model-building and model-testing dataset. Mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate performance. Bootstrap procedures were used to estimate confidence intervals (CI) for RMSE and MAE. For pre-term birth identification ROC analysis with bootstrap and exact estimation of CI for area under curve (AUC) were performed. Results Overall model estimated GA had MAE of 5.2 days (95% CI 4.6–6.8), which was similar to performance in SGA, MAE 5.3 days (95% CI 4.6–6.2). GA was correctly estimated to within 1 week for 85.21% (95% CI 72.31–94.65). For preterm birth classification, AUC in ROC analysis was 98.1% (95% CI 96.0–99.0; p < 0.001). This model performed better than Iowa regression, AUC Difference 14.4% (95% CI 5–23.7; p = 0.002). Conclusions Machine learning algorithms and models applied to metabolomic gestational age dating offer a ladder of opportunity for providing accurate population-level gestational age estimates in LMICs settings. These findings also point to an opportunity for investigation of region-specific models, more focused feasible analyte models, and broad untargeted metabolome investigation.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynaecology

Reference46 articles.

1. Lawn JE, Kinney M. Preterm birth: now the leading cause of child death worldwide. Sci Transl Med. 2014;6:263ed221.

2. Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet. 2016;388(10063):3027–35. https://doi.org/10.1016/S0140-6736(16)31593-8 Epub 2016 Nov 11. Erratum in: Lancet. 2017 May 13;389(10082):1884. PMID: 27839855; PMCID: PMC5161777.

3. Walani SR. Global burden of preterm birth. Int J Gynecol Obstet. 2020;150(1):31–3. https://doi.org/10.1002/ijgo.13195.

4. AnneCC L, Naoko K, Simon C, Stevens Gretchen A, Hannah B, Silveira Mariangela F, et al. Estimates of burden and consequences of infants born small for gestational age in low and middle income countries with INTERGROWTH-21st standard: analysis of CHERG datasets. BMJ. 2017;358:j3677.

5. United Nations. Sustainable development goals. New York: United Nations; 2015. (accessed Sept 11, 2015). http://www.un.org.proxy1.library.jhu.edu/sustainabledevelopment/summit/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3