Maternal circulating metabolic biomarkers and their prediction performance for gestational diabetes mellitus related macrosomia

Author:

Yuan Yingdi,Zhu Qingyi,Yao Xiaodie,Shi Zhonghua,Wen Juan

Abstract

Abstract Introduction Gestational diabetes mellitus (GDM), a metabolism-related pregnancy complication, is significantly associated with an increased risk of macrosomia. We hypothesized that maternal circulating metabolic biomarkers differed between women with GDM and macrosomia (GDM-M) and women with GDM and normal neonatal weight (GDM-N), and had good prediction performance for GDM-M. Methods Plasma samples from 44 GDM-M and 44 GDM-N were analyzed using Olink Proseek multiplex metabolism assay targeting 92 biomarkers. Combined different clinical characteristics and Olink markers, LASSO regression was used to optimize variable selection, and Logistic regression was applied to build a predictive model. Nomogram was developed based on the selected variables visually. Receiver operating characteristic (ROC) curve, calibration plot, and clinical impact curve were used to validate the model. Results We found 4 metabolism-related biomarkers differing between groups [CLUL1 (Clusterin-like protein 1), VCAN (Versican core protein), FCRL1 (Fc receptor-like protein 1), RNASE3 (Eosinophil cationic protein), FDR <  0.05]. Based on the different clinical characteristics and Olink markers, a total of nine predictors, namely pre-pregnancy body mass index (BMI), weight gain at 24 gestational weeks (gw), parity, oral glucose tolerance test (OGTT) 2 h glucose at 24 gw, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) at 24 gw, and plasma expression of CLUL1, VCAN and RNASE3 at 24 gw, were identified by LASSO regression. The model constructed using these 9 predictors displayed good prediction performance for GDM-M, with an area under the ROC of 0.970 (sensitivity = 0.955, specificity = 0.886), and was well calibrated (PHosmer-Lemeshow test = 0.897). Conclusion The Model included pre-pregnancy BMI, weight gain at 24 gw, parity, OGTT 2 h glucose at 24 gw, HDL and LDL at 24 gw, and plasma expression of CLUL1, VCAN and RNASE3 at 24 gw had good prediction performance for predicting macrosomia in women with GDM.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3