Development of birth weight estimation model for Ethiopian population from sonographic evaluation

Author:

Seman Nejat Mohammed,Adem Hamdia Murad,Disasa Fanta Assefa,Simegn Gizeaddis LamesginORCID

Abstract

Abstract Background Fetal birth weight (FBW) estimation involves predicting the weight of a fetus prior to delivery. This prediction serves as a crucial input for ensuring effective, accurate, and appropriate obstetric planning, management, and decision-making. Typically, there are two methods used to estimate FBW: the clinical method (which involves measuring fundal height and performing abdominal palpation) or sonographic evaluation. The accuracy of clinical method estimation relies heavily on the experience of the clinician. Sonographic evaluation involves utilizing various mathematical models to estimate FBW, primarily relying on fetal biometry. However, these models often demonstrate estimation errors that exceed acceptable levels, which can result in inadequate labor and delivery management planning. One source of this estimation error is sociodemographic variations between population groups in different countries. Additionally, inter- and intra-observer variability during fetal biometry measurement also contributes to errors in FBW estimation. Methods In this research, a novel mathematical model was proposed through multiple regression analysis to predict FBW with an accepted level of estimation error. To develop the model, population data consisting of fetal biometry, fetal ultrasound images, obstetric variables, and maternal sociodemographic factors (age, marital status, ethnicity, educational status, occupational status, income, etc.) of the mother were collected. Two approaches were used to develop the mathematical model. The first method was based on fetal biometry data measured by a physician and the second used fetal biometry data measured using an image processing algorithm. The image processing algorithm comprises preprocessing, segmentation, feature extraction, and fetal biometry measurement. Results The model developed using the two approaches were tested to assess their performance in estimating FBW, and they achieved mean percentage errors of 7.53% and 5.89%, respectively. Based on these results, the second model was chosen as the final model. Conclusion The findings indicate that the developed model can estimate FBW with an acceptable level of error for the Ethiopian population. Furthermore, this model outperforms existing models for FBW estimation. The proposed approach has the potential to reduce infant and maternal mortality rates by providing accurate fetal birth weight estimates for informed obstetric planning.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3