Autophagy Proteins and clinical data reveal the prognosis of polycystic ovary syndrome

Author:

Wu Yuanyuan,Huang Jinge,Liu Cai,Wang Fang

Abstract

Abstract Objective We aimed to investigate the significance of autophagy proteins and their association with clinical data on pregnancy loss in polycystic ovary syndrome (PCOS), while also constructing predictive models. Methods This study was a secondary analysis. we collected endometrial samples from 33 patients with polycystic ovary syndrome (PCOS) and 7 patients with successful pregnancy control women at the Reproductive Center of the Second Hospital of Lanzhou University between September 2019 and September 2020. Liquid chromatography tandem mass spectrometry was employed to identify expressed proteins in the endometrium of 40 patients. R was use to identify differential expression proteins(DEPs). Subsequently, Metascape was utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Multivariate Cox analysis was performed to analyze autophagy proteins associated with reproductive outcomes, while logistic regression was used for analyzing clinical data. Linear correlation analysis was conducted to examine the relationship between autophagy proteins and clinical data. We established prognostic models and constructed the nomograms based on proteome data and clinical data respectively. The performance of the prognostic model was evaluated by the receiver operating characteristic curve (ROC) and decision curve analysis (DCA). Results A total of 5331 proteins were identified, with 450 proteins exhibiting significant differential expression between the PCOS and control groups. A prognostic model for autophagy protein was developed based on three autophagy proteins (ARSA, ITGB1, and GABARAPL2). Additionally, another prognostic model for clinical data was established using insulin, TSH, TPOAB, and VD3. Our findings revealed a significant positive correlation between insulin and ARSA (R = 0.49), as well as ITGB1 (R = 0.3). Conversely, TSH exhibited a negative correlation with both ARSA (-0.33) and ITGB1 (R = -0.26). Conclusion Our research could effectively predict the occurrence of pregnancy loss in PCOS patients and provide a basis for subsequent research.

Funder

The National Natural Science Foundation of China

The Science Foundation of Lanzhou University

Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3