Author:
Jiang Zhenfei,Hu Xiaoyi,Zeng Huabei,Wang Xinghe,Tan Cheng,Ni Chunyan,Dai Lingyun,Liu Su
Abstract
Abstract
Objective
To explore the risk factors for intrapartum fever and to develop a nomogram to predict the incidence of intrapartum fever.
Methods
The general demographic characteristics and perinatal factors of 696 parturients who underwent vaginal birth at the Affiliated Hospital of Xuzhou Medical University from May 2019 to April 2020 were retrospectively analysed. Data was collected from May 2019 to October 2019 on 487 pregnant women who formed a training cohort. A multivariate logistic regression model was used to identify the independent risk factors associated with intrapartum fever during vaginal birth, and a nomogram was developed to predict the occurrence. To verify the nomogram, data was collected from January 2020 to April in 2020 from 209 pregnant women who formed a validation cohort.
Results
The incidence of intrapartum fever in the training cohort was found in 72 of the 487 parturients (14.8%), and the incidence of intrapartum fever in the validation cohort was 31 of the 209 parturients (14.8%). Multivariate logistic regression analysis showed that the following factors were significantly related to intrapartum fever: primiparas (odds ratio [OR] 2.43; 95% confidence interval [CI] 1.15–5.15), epidural labour analgesia (OR 2.89; 95% CI 1.23–6.82), premature rupture of membranes (OR 2.37; 95% CI 1.13–4.95), second stage of labour ≥ 120 min (OR 4.36; 95% CI 1.42–13.41), amniotic fluid pollution degree III (OR 10.39; 95% CI 3.30–32.73), and foetal weight ≥ 4000 g (OR 7.49; 95% CI 2.12–26.54). Based on clinical experience and previous studies, the duration of epidural labour analgesia also appeared to be a meaningful factor for intrapartum fever; therefore, these seven variables were used to develop a nomogram to predict intrapartum fever in parturients. The nomogram achieved a good area under the ROC curve of 0.86 and 0.81 in the training and in the validation cohorts, respectively. Additionally, the nomogram had a well-fitted calibration curve, which also showed excellent diagnostic performance.
Conclusion
We constructed a model to predict the occurrence of fever during childbirth and developed an accessible nomogram to help doctors assess the risk of fever during childbirth. Such assessment may be helpful in implementing reasonable treatment measures.
Trial registration
Clinical Trial Registration: (www.chictr.org.cnChiCTR2000035593)
Publisher
Springer Science and Business Media LLC
Subject
Obstetrics and Gynecology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献