Nomogram for perinatal prediction of intrapartum fever: a retrospective case–control study

Author:

Jiang Zhenfei,Hu Xiaoyi,Zeng Huabei,Wang Xinghe,Tan Cheng,Ni Chunyan,Dai Lingyun,Liu Su

Abstract

Abstract Objective To explore the risk factors for intrapartum fever and to develop a nomogram to predict the incidence of intrapartum fever. Methods The general demographic characteristics and perinatal factors of 696 parturients who underwent vaginal birth at the Affiliated Hospital of Xuzhou Medical University from May 2019 to April 2020 were retrospectively analysed. Data was collected from May 2019 to October 2019 on 487 pregnant women who formed a training cohort. A multivariate logistic regression model was used to identify the independent risk factors associated with intrapartum fever during vaginal birth, and a nomogram was developed to predict the occurrence. To verify the nomogram, data was collected from January 2020 to April in 2020 from 209 pregnant women who formed a validation cohort. Results The incidence of intrapartum fever in the training cohort was found in 72 of the 487 parturients (14.8%), and the incidence of intrapartum fever in the validation cohort was 31 of the 209 parturients (14.8%). Multivariate logistic regression analysis showed that the following factors were significantly related to intrapartum fever: primiparas (odds ratio [OR] 2.43; 95% confidence interval [CI] 1.15–5.15), epidural labour analgesia (OR 2.89; 95% CI 1.23–6.82), premature rupture of membranes (OR 2.37; 95% CI 1.13–4.95), second stage of labour ≥ 120 min (OR 4.36; 95% CI 1.42–13.41), amniotic fluid pollution degree III (OR 10.39; 95% CI 3.30–32.73), and foetal weight ≥ 4000 g (OR 7.49; 95% CI 2.12–26.54). Based on clinical experience and previous studies, the duration of epidural labour analgesia also appeared to be a meaningful factor for intrapartum fever; therefore, these seven variables were used to develop a nomogram to predict intrapartum fever in parturients. The nomogram achieved a good area under the ROC curve of 0.86 and 0.81 in the training and in the validation cohorts, respectively. Additionally, the nomogram had a well-fitted calibration curve, which also showed excellent diagnostic performance. Conclusion We constructed a model to predict the occurrence of fever during childbirth and developed an accessible nomogram to help doctors assess the risk of fever during childbirth. Such assessment may be helpful in implementing reasonable treatment measures. Trial registration Clinical Trial Registration: (www.chictr.org.cnChiCTR2000035593)

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3