Author:
Yue Fagui,Hao Mengzhe,Jiang Dandan,Liu Ruizhi,Zhang Hongguo
Abstract
Abstract
Background
Chromosomal 16p11.2 deletions and duplications are genomic disorders which are characterized by neurobehavioral abnormalities, obesity, congenital abnormalities. However, the prenatal phenotypes associated with 16p11.2 copy number variations (CNVs) have not been well characterized. This study aimed to provide an elaborate summary of intrauterine phenotypic features for these genomic disorders.
Methods
Twenty prenatal amniotic fluid samples diagnosed with 16p11.2 microdeletions/microduplications were obtained from pregnant women who opted for invasive prenatal testing. Karyotypic analysis and chromosomal microarray analysis (CMA) were performed in parallel. The pregnancy outcomes and health conditions of all cases after birth were followed up. Meanwhile, we made a pooled analysis of the prenatal phenotypes in the published cases carrying 16p11.2 CNVs.
Results
20 fetuses (20/20,884, 0.10%) with 16p11.2 CNVs were identified: five had 16p11.2 BP2-BP3 deletions, 10 had 16p11.2 BP4-BP5 deletions and five had 16p11.2 BP4-BP5 duplications. Abnormal ultrasound findings were recorded in ten fetuses with 16p11.2 deletions, with various degrees of intrauterine phenotypic features observed. No ultrasound abnormalities were observed in any of the 16p11.2 duplications cases during the pregnancy period. Eleven cases with 16p11.2 deletions terminated their pregnancies. For 16p11.2 duplications, four cases gave birth to healthy neonates except for one case that was lost to follow-up.
Conclusions
Diverse prenatal phenotypes, ranging from normal to abnormal, were observed in cases with 16p11.2 CNVs. For 16p11.2 BP4-BP5 deletions, abnormalities of the vertebral column or ribs and thickened nuchal translucency were the most common structural and non-structural abnormalities, respectively. 16p11.2 BP2-BP3 deletions might be closely associated with fetal growth restriction and single umbilical artery. No characteristic ultrasound findings for 16p11.2 duplications have been observed to date. Given the variable expressivity and incomplete penetrance of 16p11.2 CNVs, long-term follow-up after birth should be conducted for these cases.
Funder
The Science and Technology Department of Jilin Province, China.
Publisher
Springer Science and Business Media LLC