Clinical prediction model for prognosis in kidney transplant recipients (KIDMO): study protocol

Author:

Schwab SimonORCID,Sidler Daniel,Haidar Fadi,Kuhn Christian,Schaub Stefan,Koller Michael,Mellac Katell,Stürzinger Ueli,Tischhauser Bruno,Binet Isabelle,Golshayan Déla,Müller Thomas,Elmer Andreas,Franscini Nicola,Krügel Nathalie,Fehr Thomas,Immer Franz,Amico Patrizia,Folie Patrick,Gannagé Monique,Matter Maurice,Nilsson Jakob,Peloso Andrea,de Rougemont Olivier,Schnyder Aurelia,Spartà Giuseppina,Storni Federico,Villard Jean,Wirth-müller Urs,Wolff Thomas,Aubert John-David,Banz Vanessa,Beckmann Sonja,Beldi Guido,Berger Christoph,Berishvili Ekaterine,Berzigotti Annalisa,Bochud Pierre-Yves,Branca Sanda,Bucher Heiner,Catana Emmanuelle,Cairoli Anne,Chalandon Yves,De Geest Sabina,De Seigneux Sophie,Dickenmann Michael,Dreifuss Joëlle Lynn,Duchosal Michel,Ferrari-Lacraz Sylvie,Garzoni Christian,Goossens Nicolas,Halter Jörg,Heim Dominik,Hess Christoph,Hillinger Sven,Hirsch Hans H,Hirt Patricia,Hoessly Linard,Hofbauer Günther,Huynh-Do Uyen,Laesser Bettina,Lamoth Frédéric,Lehmann Roger,Leichtle Alexander,Manuel Oriol,Marti Hans-Peter,Martinelli Michele,McLin Valérie,Merçay Aurélia,Mettler Karin,Mueller Nicolas J,Müller-Arndt Ulrike,Müllhaupt Beat,Nägeli Mirjam,Oldani Graziano,Pascual Manuel,Passweg Jakob,Pazeller Rosemarie,Posfay-Barbe Klara,Rick Juliane,Rosselet Anne,Rossi Simona,Rothlin Silvia,Ruschitzka Frank,Schachtner Thomas,Scherrer Alexandra,Schuurmans Macé,Sengstag Thierry,Simonetta Federico,Stampf Susanne,Steiger Jürg,Stirnimann Guido,Van Delden Christian,Venetz Jean-Pierre,Vionnet Julien,Wick Madeleine,Wilhelm Markus,Yerly Patrick, ,

Abstract

Abstract Background Many potential prognostic factors for predicting kidney transplantation outcomes have been identified. However, in Switzerland, no widely accepted prognostic model or risk score for transplantation outcomes is being routinely used in clinical practice yet. We aim to develop three prediction models for the prognosis of graft survival, quality of life, and graft function following transplantation in Switzerland. Methods The clinical kidney prediction models (KIDMO) are developed with data from a national multi-center cohort study (Swiss Transplant Cohort Study; STCS) and the Swiss Organ Allocation System (SOAS). The primary outcome is the kidney graft survival (with death of recipient as competing risk); the secondary outcomes are the quality of life (patient-reported health status) at 12 months and estimated glomerular filtration rate (eGFR) slope. Organ donor, transplantation, and recipient-related clinical information will be used as predictors at the time of organ allocation. We will use a Fine & Gray subdistribution model and linear mixed-effects models for the primary and the two secondary outcomes, respectively. Model optimism, calibration, discrimination, and heterogeneity between transplant centres will be assessed using bootstrapping, internal-external cross-validation, and methods from meta-analysis. Discussion Thorough evaluation of the existing risk scores for the kidney graft survival or patient-reported outcomes has been lacking in the Swiss transplant setting. In order to be useful in clinical practice, a prognostic score needs to be valid, reliable, clinically relevant, and preferably integrated into the decision-making process to improve long-term patient outcomes and support informed decisions for clinicians and their patients. The state-of-the-art methodology by taking into account competing risks and variable selection using expert knowledge is applied to data from a nationwide prospective multi-center cohort study. Ideally, healthcare providers together with patients can predetermine the risk they are willing to accept from a deceased-donor kidney, with graft survival, quality of life, and graft function estimates available for their consideration. Study registration Open Science Framework ID: z6mvj

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Unimedsuisse

Transplant Centres

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preoperative Risk Assessment of Early Kidney Graft Loss;Transplantation Direct;2024-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3